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Abstract: This paper presents a study on potential instability and spiral structure of unstable rain clusters. 
First, we develop a linearized non-axisymmetrical mathematic model for rain clusters in circular cylindrical 
coordinates and acquire its analytic solution. Second, we discuss the potential instability of 
non-axisymmetrical rain clusters. Finally, we conclude that spiral structures can exist in rain clusters. Our 
analysis indicates that potential instability occurs when humid stratification coefficient is less than zero. 
Unstable growth rate increases with the increase of the absolute value for humid stratification coefficient. 
The simpler the vertical structure of perturbation, the thicker the inversion layer; additionally, the smaller 
the radius of the rain clusters, the larger the unstable growth rate. Simulation results agree well with those 
from observation and forecast. The spiral structure simulated by our model is similar to a radar echo, 
suggesting that rain clusters with spiral structures can occur in the atmosphere. In addition, they are 
generally close to the model solution in this work. 
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1  INTRODUCTION  

Rain clusters refer to a meso-β scale system with 
an area surrounded by an isohyetal line of 10 mm/h 
over a life cycle of more than 2 hours and on a spatial 
scale at the 10–100 km range. After having performed 
numerical simulation of a case of rain clusters and 
described their spatial structure, Tao et al. pointed out 
that in upper air, the pressure and wind fields have 
apparent non-geostrophic characteristics. Along the 
pressure gradient, there is a strong non-geostrophic 
outflow. In mid-altitude, rain clusters often manifest 
as mesoscale-disturbed troughs; that is, air enters from 
the rear and becomes a mid-layer inflow. In low 
altitude, rain clusters display mesoscale-cyclonic 
vortices with a mesoscale-divergent system in the 
front, from which the air flows out and enters the 
cluster, and then becomes a lower-layer inflow[1]. 
Except for small troughs and ridges, mature and stable 
mesoscale systems are horizontally 
quasi-one-dimensional or symmetrical, as described 
by Zeng[2]. Rain clusters are a prime example of such 
a system. 

The evolution of weather systems has been 
closely connected with the instability of atmospheric 
waves[3]. Absolute instability occurs if unsaturated air, 

with a stratification coefficient of less than zero, is 
unstable; this is almost impossible in free atmosphere. 
Unsaturated air is statically stable with a stratification 
coefficient greater than zero, but it is statically 
unstable for wet saturated air with a coefficient of 
humid stratification less than zero. This is called the 
first kind conditional instability or potential instability. 
Such potential instability occurs when moist air 
becomes saturated during its ascent, causing 
condensation and release of latent heat. Based on their 
study on the mechanisms of a storm that occurred in 
the eastern Fujian Province in 2002, Zhen et al.[4] 
reported that the release of potential instability energy 
could be a possible mechanism in storm development. 

Rain clusters can directly produce storms, and 
hence a study on rain clusters is theoretically 
important for mesoscale dynamics and has potential 
implications in storm forecasting. Initially, we 
developed an axisymmetric numerical model to study 
rain clusters. Through analysis, we have acquired its 
solution. We have analyzed its potential instability 
and got related unstable criteria[6]. 

Spiral structure is common in the natural world 
and occurs on the spatial scales from the Milky 
Galaxy to the rotary water of sinks. In the atmosphere, 
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spiral structure occurs as planetary waves, 
extratropical cyclones, tropical cyclones, and plateau 
vortices[7-14]. There is increasing interest in studying 
the spiral structure in the tropical cyclone due to its 
perfect spiral cloud bands and close link with the 
development of the tropical cyclone[15-17]. Most rain 
clusters appear as having round rather than spiral 
structures, and many might find interest exploring the 
existence of these structures. The first step towards 
this goal is to develop a non-axisymmetric rain cluster 
model, and to test whether the model can support a 
spiral structure. For that purpose, we have presented 
in this paper a rain cluster model that is capable of 
producing spiral structures. We have focused on the 
analysis of potential instability and spiral structure of 
the rain cluster. We have also presented radar echo 
products of 1-h accumulated rainfall from a cloud 
cluster with spiral structure, which confirms the 
existence of spiral structures in reality. 

2  MATHEMATICAL MODEL AND 
SOLUTIONS 

Rain clusters are generally a system with meso-β 
scale circulation airflow. Thus, we can safely assume 
in this model that the geostrophic parameter f  is 
used as a constant. For rain clusters whose life cycles 
are less than 3 hours, we can even take 0f = . In 
other words, we can ignore the effect of earth rotation. 
By using Boussinesq approximation to filter sound 
waves and assuming pseudo-adiabatic condition 
without friction, we used a circular cylindrical 
coordinates system to build the following equations. 
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By dividing the thermodynamic variables into a 
basic field and its deviation, we introduced a 
pseudo-equivalent potential temperature deviation 

seϑ′ , density deviation ρ′ , and pressure deviation 
p′ . Then, 

0
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where 0ρ , ( )p z , and ( )se zϑ
−

 are the typical 
values of density, pressure, and pseudo-equivalent 
potential temperature, respectively. At the same 
height, there are p′ « p , seϑ′ « seϑ , and ρ′ « 0ρ . 
Assuming that the deviation is perturbation and the 
basic field satisfies the original equation and is 
statically equilibrium along the vertical direction, then 

0
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In the equation above, the following 
approximation was used[18]: 
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where 0seϑ  is the standard value of 
pseudo-equivalent potential temperature. We assumed 

that
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. Inasmuch as this work 

mainly addresses the effect of geopotential instability 
on rain clusters and for ease of acquiring analytic 
solutions, the base flow is assumed negligible. With 
the stratification coefficient 2

seN  set constant, we can 
derive , , , ,u v w p Θ′ ′ equations after linearization 
(i.e., the perturbation value includes u , v , w , p′ , 
and Θ′ ). 
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Eqs. (5.1)–(5.5) are the mathematical models used 
in our rain cluster model. To solve these linear 
equations, we assumed that there is no topographic 
effect and set the boundary condition to be 

0, 0z w= = ， , 0z H w= = ,    (6) 
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where H is the height of the tropopause or inversion 
layer. Under these boundary conditions, and to 
determine a set of equations of amplitude structures in 
the r direction for variables 0, , , / ,u v w p ρ Θ′ ′ , the 
standard modular can be set as 
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where m is a non-negative integer. The set of 
equations for amplitude structures in the r direction 
can then be determined: 
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From Eq. (8.4), we can obtain 2 /seN WΘ σ= − . 
This can then be used in Eq. (8.3) to get 
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 is divergence. Then, 

dWU fV
dr

σ χ+ =          (10.1) 

WfU V m
r

σ χ+ =          (10.2) 

0drU mV n W
rdr r H

π
− + =          (10.3) 

From Eqs. (10.1) and (10.2), we can obtain U  and 
V : 
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By substituting Eqs. (11.1) and (11.2) into Eq. 
(10.3) to eliminate U  and V , we can obtain the 
following ordinary differential equation on ( )W r : 

( )
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2 2 2 2

2 2 2
se

n f
H N
π σλ

σ
−

= ⋅
−

.           (13) 

Variable λ  is a constant and m is a 
non-negative integer. Thus, Eq. (12) is a Bessel 
equation of the non-negative integer order. When 
0 r≤ < ∞ , the solution W  is the first kind of 
Bessel function mJ . Then, solving Eq. (12) yields 

( )
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where 0λ >  and the amplitude W%  can be any real 
constant. 

3  FORM AND CHARACTER OF SOLUTIONS 

3.1 Model description 

By transforming Eq. (14) and setting 

       
2 2

2 2ˆ
se

n fr r
H N
π σ

σ
−

=
−

        (15) 

we can obtain 
( )ˆmW W J r= ⋅% .            (16) 

To present the structure of W , an image of 
( )mJ x  is given in Fig. 1, where 

0,1, 2, 3, 4,5m = . 

3.2 Criterion of growth rate of instability 

Before determining σ  and obtaining the 
criterion on growth rates of instability, we need to 
define the range ( r ) of the rain cluster. In this study, 
0 r r< < % , and r%  corresponds to the first value 
( mα ), where 0r ≠  and 0mJ =  (Table 1 and Fig. 
1). We can also take r%  as the radius of the rain 
cluster. In the interval (0, )r% , mJ  is always greater 
than zero. 
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Table 1. Values of mα  

Zero 0 ( )J x  1( )J x  2 ( )J x  3 ( )J x  4 ( )J x  5 ( )J x  

1 2.4048 3.8317 5.1336 6.3802 7.5883 8.7715 
2 5.5201 7.0156 8.4172 9.7610 11.0647 12.3386 
3 8.6537 10.1735 11.6198 13.0152 14.3725 15.7002 
4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801 
5 14.9309 16.4706 17.9598 19.4094 20.8269 22.2178 
       

 

Fig. 1. Bessel function of the first kind 

The relationship between r%  and mα  is 
determined. From the definition of r%  and Eq. (14), 
we can obtain  
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We can then obtain  
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From Eq. (18), we can obtain a frequency 
dispersion related to 2σ : 

( ) ( )
( ) ( )

2 22 2
2

2 2

/ /
/ /

m se

m

n H f r N
n H r

%

%

π α
σ

π α

+
=

+
.  (20) 

The right-hand side of Eq. (20) is a real number. 
Combined with Eq. (7), instability could occur when 

2 0σ < . Therefore, 
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where σ  is a pure imaginary number. In Eq. (21), 
n , f , r% , H , and mα  are all greater than 0. If 

2 0seN ≥ , 2 0σ <  cannot be established, and the 
condition becomes stable. Therefore, for instability to 
occur, the necessary condition is 2 0seN < . Clearly, 

the instability is potential instability. 
By solving the inequality in Eq. (21), we can 

obtain the necessary and sufficient conditions of 
instability as follows: 

2 2 2 2
2

2 2se
m

n r fN
H

%π
α

< − .          (22) 

From the above inequality, the necessary and 
sufficient conditions become stricter than the 
necessary condition of potential instability due to the 
existence of f . When 0f =  (i.e., rain clusters 
with life cycles of less than 3 h or equatorial rain 
clusters), the necessary condition is also sufficient. 
Therefore, f  helps stabilize the atmosphere. 

3.3 Effect of environmental coefficients and 
perturbation structure on the growth rate of 
instability 

Based on Eq. (20), we can discuss the effect of 
environmental coefficients and perturbation structure 
on the growth rate of instability. When 0f = , 

2
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or 
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σ
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=
⎛ ⎞

+ ⋅⎜ ⎟
⎝ ⎠

%
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Clearly, from Eq. (23), 2 0seN < , 2 0σ < , and 
potential instability may occur. Nevertheless, Eq. (24) 
can also help analyze the effect of environmental 
coefficients and perturbation structure on the growth 
rate of instability ( σ ). The conclusions are as 
follows: 

(1) The more unstable the humid stratification 
(i.e., 2 0seN < ) and the greater 2

seN , the larger the 

value of σ . 
(2) When the atmosphere is potentially unstable, 

the smaller the value of n  (i.e., simpler perturbation 
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vertical structure), the larger the value of σ . 
Usually, n=1 for rain clusters, and the perturbation is 
in a vertical semi-wave state. 

(3) When the atmosphere is potentially unstable, 
the larger the value of H  (i.e., thicker inversion 
layer), the larger the value of σ . 

(4) When the atmosphere is potentially unstable, 
the smaller the value of r%  (i.e., smaller radius of the 
rain cluster), the larger the value of σ . As a result, 
most heavy precipitations are locally distributed. 

(5) When the atmosphere is potentially unstable, 
the larger the value of mα , the larger the value of 

σ . 
Among these conclusions, conclusions (1)−(4) 

agree well with those from the observation and 
forecast. In the next paragraphs, we will specifically 
discuss conclusion (5). 

When 0f ≠ , the situation is complicated. 
Conclusion (1) can still be established. When 

2 0seN < , the smaller the value of f , the larger the 

value of σ ; consequently, f  can keep the 
atmosphere stable. Inasmuch as no direct estimates of 
the effects of other environmental coefficients on σ  
are possible, we carried out a calculation by sampling 
the following representative values for the 
environmental coefficients: 2 510seN −= − , 1n = , 

3 kmH = , 5 kmr =% , and mα = 2α . When a 
coefficient changes, whereas others maintain their 
original values, we can confirm the relationship 
between σ  and the environmental coefficients. The 

results indicate that when 0f ≠  and with 
representative environmental coefficients sampled, the 
above conclusions can still be established (See Figs. 2 
& 3). 
 

 
Fig. 2. Variations in growth rate instability σ  with 2

seN , 

n , H , and r% . Ordinates: σ , units in 3 -110 s−× ; 

Abscissa: Real line for 2
seN , units in 5 -210 s−× ; broken line 

for n , dash dotted line for H, units in km; line with asterisks 
for r% , units in 5 km 
 

 
Fig. 3. Variations in growth rate instability σ  with mα  

4 SPIRAL STRUCTURE OF UNSTABLE 
PERTURBATION 

When 0m = , the perturbation is independent of 
θ , and the air motion depends only on r  in the 
horizontal direction. No spiral structure appears in this 
case (for details, see Tan[6]). We only discussed the 
case of 0m ≠ . 

By transforming Eq. (14) into Eq. (7) and by 
considering Eq. (19), we can obtain the 
spatiotemporal distribution of vertical motion w . 

( )Re sin i m t
m m
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%
%

%
%

 
When σ  is a real number ( 2 0σ ≥ ), w  can be 

expressed by Eq. (25.1); when σ  is purely 
imaginary ( 2 0σ < ), variable w  can be expressed 
by Eq. (25.2). From Eq. (25.2), when air is unstable, 
the structures of perturbation maintain their original 
shape and increase only in original position. 

To discuss further the horizontal structure of w , 
we determined the following approximation: 

sinm m
r rJ A
r r

%
% %

πα⎛ ⎞ ⎛ ⎞≈ ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

        (26) 

where A%  is maximum amplitude of m m
rJ
r

α⎛ ⎞
⎜ ⎟
⎝ ⎠%

 

and [0, ]r r∈ %  (see Fig. 1 for details). Eq. (26) is 
the first item of the expanded formula for 
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( 1, 2,3,l = LL ), where A%  may be 

other values besides maximum amplitude, as W%  of 
Eq. (25) is a random constant. From Eq. (25.2), we 
can obtain 
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1 2w w= +                            (27) 

We can express W A⋅ %%  by using W% . The 
solution is the superposition of 1w  and 2w . The 

difference between 1w  and 2w  is the horizontal 

structure. The former is ( )sin /r r mπ θ+%  and the 

latter is ( )sin /r r mπ θ−% . The horizontal structure 

of 1w  and 2w  are shown in Figs. 4a, 4b, 5a, and 5b, 
where m =1 or 2, with m  representing the 
numerical measure of spiral structures. In Figs. 4 and 
5, both 1w  and 2w  have spiral structures in the 
opposite direction, indicating that they reflect mutual 
images of each other. Variables 1w  and 2w  
individually satisfy the original equation. The vertical 
motion of 1w  or 2w  is not zero in the area r r= % , 
whereas the vertical motion of the superposition of 

1w  and 2w  is zero in the area r r= % . Two kinds of 

spiral structures for 1w  and 2w  can also exist in 
mathematical theory. Physically speaking, however, 
only 1w  can exist. Since energy only diffuses 
outward from a finite region, and cannot diffuse 
inward to a point in order to generate a singular point, 
it is impossible for 2w  to appear. In the natural 
world, the spiral structures of eddy galaxies (including 
the Milky Galaxy) and tropical cyclones in Northern 
Hemisphere are also in the form of 1w . Hence, the 

spiral structure of rain clusters is in the form of 1w . 
Then,  

1sin sin tn z rw W m e w
H r

%
%

σπ π θ⎛ ⎞ ⎛ ⎞≈ ⋅ ⋅ + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(28) 

As for conclusion 5, based on Fig. 1, when 

0m ≠ , then ( )0 0mJ = , except when 

0m = , ( )0 0 1J = . The obvious difference between 

the forms of 0m =  and 0m ≠  is that the former 
vertical velocity corresponds to the greatest value 
while the latter is zero. At the same time, the 
maximum amplitude of the former is bigger than that 
of the latter. Moreover, the former perturbation is 
independent of θ  and presents circular symmetry, 
whereas the latter relates to θ  and comes with a 
spiral structure. The larger the value of m , the larger 
the value of mα  becomes (see Fig. 1 for details). 

When the atmosphere is potentially unstable, σ  
increases with a rise in the number of spiral structure 
bands m  (see Fig. 5 for details). Meanwhile, the 
larger the value of m , the smaller the amplitude of 

mJ  (see Fig. 1 for details). The two actions constrain 
each other. We used the linearization model and 
proper superposition theorem, whose action 
dominantly depends on the initial field and the life 
cycle of the perturbation. The cases of 0m =  and 

1, 2,3,m = LLare the modes of the solution for the 
rain cluster model. Therefore, the linear superposition 
of these modes is also the solution of the model. The 
superimposition approaches the actual rain clusters 
much more. Fig. 6 shows the superposition of 0m =  
and 2m = . 

In actual observations, the rain clusters often 
appear as circular symmetries with the peak rainfall at 
the center. Does the situation from our simulation (i.e., 

0m ≠ ) exist in real rain clusters? It is the question 
we must answer. We studied a rare rainstorm event 
that occurred in an area in Shanghai in August 25, 
2008. From the picture of radar products on one-hour 
cumulative precipitation (OHP) (Fig. 7), we found a 
rain cluster with two spiral bands situated near the 
center of the picture, which corresponds to the 
northwest of Shanghai. The rainfall at the center of 
the rain cluster is relatively smaller. As shown in the  
figure, there are indeed rain clusters with spiral 
structures similar to the theoretical analysis above, 
and they are in the form of 1w . The horizontal 
structure from our model (Fig. 6) is also similar to that 
of the rain cluster.
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Fig. 4. Horizontal structure of 1w  and 2w  ( m =1, 1, 1, / 2, 0W n z H t= = = =% ). (a) 1w  and (b) 2w  

 

 
Fig. 5 Horizontal structure of 1w  and 2w  ( m =2, 1, 1, / 2, 0W n z H t= = = =% ). (a) 1w  and (b) 2w

Lastly, we emphasize that we can follow the same 
approach to analyze stable cases. For the final 
solution, we have 

sin cos( )m m
r n zw W J m t
r H

πα θ σ⎛ ⎞ ⎛ ⎞= ⋅ ⋅ ±⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

%
%

sin sinn z rW m t
H r

%
%

π π θ σ⎛ ⎞ ⎛ ⎞≈ ⋅ ⋅ + ±⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.  (29) 

From Eq. (29), the spiral structures are still 
evident with the vertical motion, but they are different 
from the case of instability in that spiral bands rotate 
with time. 
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Fig. 6. Horizontal structure of the superposition for 0m =  
and 2m = . ( 0m = , 1W =% , 2m = , 2W =% , 

1, / 2, 0n z H t= = = )  
 

 
Fig. 7. Radar product chart for 1-h cumulative rainfall at 
01:12:22 UTC (August 25, 2008) 

5 CONCLUSIONS 

In this paper, we discussed the spiral structure and 
potential instability of rain clusters. First, we 
developed a linearized non-axisymmetric 
mathematical model of rain clusters in the circular 
cylindrical coordinates and acquired its analytic 
solution. Second, we discussed the potential 
instability of non-axisymmetric rain clusters. Finally, 
we concluded that spiral structures could exist in rain 
clusters. Our analysis indicates that potential 
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instability occurs when the humid stratification 
coefficient 2

seN  is less than zero, and the instability 
increases with the increase of the absolute value of 

2
seN . The simpler the vertical structure of perturbation, 

the thicker the inversion layer becomes; in addition, 
the smaller the radius of the rain cluster, the larger the 
rate of unstable growth σ . Our discoveries conform 
to the observation and forecast. The spiral structures 
simulated by our model are consistent with those of 
the observation and forecast, suggesting that rain 
clusters with spiral structure can occur in the 
atmosphere. The spiral structure is also generally the 
same as that of the model solution in this work. It 
showed that our rain cluster model is successful. Our 
analysis also showed that there is a relationship 
between the spiral bands of a rain cluster and the rate 
σ  of unstable growth. We found that the linear 

superposition of solution modes ( 0m =  and 0m ≠ ) 
is closer to the observation. 

However, our model encountered a few 
limitations: (1) The assumption that 2

seN  is a 
constant is an oversimplification of reality. (2) The 
adaptation of linearization in our model, which is a 
reasonable assumption for the early development 
stage of a rain cluster, may not be suitable for a 
mature rain cluster. (3) The effect of the base flow is 
ignored. In the absence of f, the rain cluster can be 
considered located in an even flow field, without any 
horizontal or vertical shear. In view of the ability of 
the current simulation, these limitations are hard to 
avoid but will be further explored in future studies. 
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