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Abstract: In this paper we investigate the impact of the Atmospheric Infra-Red Sounder (AIRS) 
temperature retrievals on data assimilation and the resulting forecasts using the four-dimensional Local 
Ensemble Transform Kalman Filter (LETKF) data assimilation scheme and a reduced resolution version of 
the NCEP Global Forecast System (GFS). Our results indicate that the AIRS temperature retrievals have a 
significant and consistent positive impact in the Southern Hemispheric extratropics on both analyses and 
forecasts, which is found not only in the temperature field but also in other variables. In tropics and the 
Northern Hemispheric extratropics these impacts are smaller, but are still generally positive or neutral. 
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1  INTRODUCTION  

The Local Ensemble Transform Kalman Filter 
(LETKF) (Hunt et al.[1]) is an efficient data 
assimilation scheme of the square root ensemble 
Kalman filter family (Tippet et al.[2]). It is closely 
related to Ensemble Transform Kalman Filter (Bishop 
et al.[3]) and was developed from the Local Ensemble 
Kalman Filter (LEKF, see Ott et al.[4]), but with 
improved computational efficiency. Unlike previously 
proposed serial square-root schemes that assimilate 
the observations one by one (Anderson[5], Whitaker et 
al.[6]), both LEKF and LETKF assimilate all 
observations within a local region simultaneously.  
In this way, these schemes can utilize parallel 
computation and are efficient when assimilating 
satellite observations, the number of which can be 
much larger than the number of degrees of freedom in 
the model. 

The LEKF has been implemented to assimilate 
simulated observations in the NCEP Global Forecast 
System (GFS) model (Szunyogh et al.[7]). Liu et al.[8] 
have applied the LETKF to the NASA fvGCM model. 
The results from both LEKF and LETKF are much 

better than those from 3D-Var in a perfect model 
scenario. Szunoygh et al.[9] further showed that the 
LETKF analysis has been shown to be superior to the 
NCEP SSI (operational 3D-Var of NCEP in 2004) 
analysis when assimilating real conventional 
(non-radiance) observations on the NCEP GFS model 
at T62L28 resolution. We expect that LETKF will 
show a similar advantage when assimilating real 
satellite data. 

The Atmospheric Infra-Red Sounder (AIRS) was 
launched on EOS Aqua in 2002. Some positive 
impacts on global analysis and forecast have been 
found in 3D-Var when assimilating AIRS radiances 
(LeMarshall et al.[10]) and AIRS version 3 (v3) 
retrievals (Atlas[11]). Since the LETKF has advantage 
over 3D-Var mentioned above, it is important to 
assess the ability of the LETKF to assimilate AIRS 
retrievals. 

In this study, we use LETKF assimilation 
(Szunyogh et al.[9]) of all the real operational 
non-radiance observations on the NCEP GFS as a 
control run. Then, we add v5 emulation AIRS 
temperature retrievals, a more advanced version than 
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that used by Atlas[11], for the AIRS run. The impact of 
AIRS temperature retrievals are examined by 
comparing the accuracy of the analyses and forecasts 
of AIRS run with that of control run, which did not 
assimilate AIRS data. As in Szunyogh et al.[9], we use 
the 4D-LETKF to assimilate the observations within 
an analysis time window at their observation time. 

The paper is organized as follows: In section 2, 
we briefly describe the 3D-LETKF scheme and its 
extension, 4D-LETKF. In sections 3 and 4, AIRS 
retrievals and experimental setup are described. In 
sections 5 and 6, AIRS impacts on both analyses and 
forecasts are given and discussed. Section 7 provides 
a conclusion and discussion. 

2  3D- AND 4D-LETKF 

Hunt et al.[1] provide a detailed description of the 
LETKF and explain how it differs from the other 
formulations of ensemble-based Kalman filters. Here, 
we emphasize its main characteristics. The LETKF 
uses the observations to update only the ensemble 
mean (shown in Eq. (1)), while it updates the 
ensemble perturbations by transforming the forecast 
perturbations bX through a transform matrix 

2/1]~)1[( aK P−  (Eq. (2): 

)]([~ 1bb boba h xyR)(HXPXxx Ta −+= − ,    (1) 
2/1]~)1[( aba K PXX −= ,        (2) 

here K is the total number of ensemble members, h is 
the nonlinear observation operator and H its linear 
matrix. ba XX ,  are the analysis and forecast 

ensemble perturbations, respectively. bX  is updated 
every analysis time step, therefore the forecast error 

covariance bTbb
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unlike the constant forecast error covariance used in 
3D-Var. aP~ , the analysis error covariance in 
ensemble space, is given by 

[ ] 11 )()()1(~ −−+−= bTba K HXRHXIP ,   (3) 
which has dimension K by K, much smaller than 
either the dimension of the model or the number of 
observations. Thus, the LETKF performs the matrix 
inverse in the space spanned by the forecast ensemble 
members, which greatly reduces the computational 
cost. 

The mean analysis state generated by this 
3D-LETKF is the linear combination of the 
background ensemble states which best fits the 
available observations at analysis time. 4D-LETKF 
modifies 3D-LETKF by seeking the linear 
combination of the ensemble trajectories that best fits 
the observations within the assimilation window 
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n. Here T is the assimilation window length. 
Specifically, 4D-LETKF solves the following analysis 
equations. 
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where the subscript l refers to the corresponding 
model state within the assimilation window. In this 
way, like 4D-Var, 4D-LETKF can assimilate 
observations at their right observed time, which 
benefits assimilating satellite data. The details of the 
4D-LETKF can be found in Hunt et al.[12] and Harlim 
and Hunt [13]. 

3  OBSERVATIONS 

We assimilate two observational data sets. The 
first set used in the control run contains all 
operationally available data except radiances 
(including all conventional data, satellite 
cloud-tracked winds) in January 2004. This 
conventional data is the same as that used by 
Szunyogh et al.[9] The second set of observations (Fig. 
1) is the first set together with the AIRS temperature 
retrievals in the same period, provided by NESDIS at 
every 3°×3° and 100 vertical levels. The AIRS 
retrieval algorithm is a “version 5 emulation” system, 
based on the AIRS operational version 4 (Susskind et 
al.[14], Susskind et al.[15]) but with some changes 
(Chris Barnet, personal communication). The quality 
control flag resembles v4 qual_temp_mid=0 flag, but 
is applied to the whole column. 

4  EXPERIMENT SETUP 

Using 4D-LETKF, we first assimilate the first set 
of observations in January 2004 with the same NECP 
GFS T62/L28 model as used in Szunyogh et al.[9] 
(control run). The observation error standard deviation 
is provided along with the observations by NCEP. 40 
ensemble members are used. We update analysis 
every 6 hours at 0000 Coordinated Universal Time 
(UTC), 0600 UTC, 1200 UTC and 1800 UTC, using 
observations from a 6-hour window centered at the 
analysis time. The background ensemble trajectories 
are outputted every 3 hours to form the corresponding 
model states within the 6-hour analysis window. We 
verify the analyses and forecasts against the NCEP 
GFS T254/L64 (much higher resolution than the 
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model we used here) operational analysis that used all 
available operational observations, including 
radiances from ATOVS, but no AIRS data. We then 
assimilate the second set of observations including the 

AIRS temperature retrievals for the same time period 
(AIRS run) and assess the AIRS impact by comparing 
the results from the AIRS run with those from the 
control run.

 

 
Fig. 1. Spatial distribution of the conventional temperature observations (plus sign) and AIRS temperature retrievals (closed circle) 
around 500 hPa in each window centered at analysis times on 24 January 2004

The observational errors are usually assumed to 
be independent with each other in the data 
assimilation process. However this assumption is not 
valid for retrievals due to the strong error correlations 
in the same vertical column that are the result of 
overlaps between the weighting functions of the 
different channels. Ideally, it is necessary to provide 
the error correlations when the retrievals are 
assimilated. However, these correlations are very 
difficult to determine (Joiner and Da Silva[16]). For 
simplicity, we ignore the error correlations, but 
increase the error standard deviations for AIRS 
temperature retrievals (provided by Chris Barnet, 
private communication) by a factor of 2 to 
compensate for the reduced magnitude of the 
observation error covariance matrix. The original 
error standard deviations at 100 vertical levels (Fig. 2) 
indicate that the AIRS retrievals have achieved an 
accuracy of 1 K between 300–900 hPa and 2 K near 
the surface and at upper levels. 
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Fig. 2. Error standard deviations for AIRS temperature 

retrievals 

5  ANALYSIS IMPACTS  

Figure 3 shows the domain averaged 500-hPa 
temperature analysis RMS error verified against the 
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NCEP T254/L64 analysis for the control run (solid 
curve) and the AIRS run (dotted curve). There is a 
consistent reduction of errors when AIRS retrievals 
are assimilated in the global average point of view. It 
is remarkable that on days such as January 3rd, 13th 
and 27th, when the AIRS retrievals were missing, the 
AIRS run has almost the same RMS error as the 

control run, confirming the significant impact of AIRS 
retrievals on the analysis. As expected, the AIRS data 
improved the analysis more over the SH extratropics, 
by about 30%. The results for tropics and the 
Northern Hemisphere (NH) extratropics show a 
smaller but still consistent positive impact in the 
analysis.

 

 
Fig. 3. Time series of 500-hPa temperature analysis RMS error in January 2004 for the control run (solid) and the AIRS 

run (dotted), averaged over globe, tropics  (30°S–30°N), the Southern Hemisphere (SH) extratropics (90°S–30°S) 
and the NH extratropics (30°N–90°N). The ovals indicate days in which AIRS retrievals were missing.

Though only AIRS temperature retrievals were 
assimilated, the improvements are also found in other 
variables. The temperature information benefits other 
variables through the cross correlation between the 
observed temperature variable and other variables 
within the evolving dynamical forecast error 
covariance bP and through the forecast process. This 
is seen in Fig. 4 with an improved AIRS analysis for 
the 500-hPa zonal wind field. 

Figure 5 shows the AIRS impact at all vertical 
levels. In general, the analysis of the AIRS run is 
more accurate than that of control run for most of 
tropospheric levels, shown with blue color. However, 
a negative impact is observed in high levels (yellow 

color) which may be due to relatively big error of 
AIRS temperature retrievals at these levels (Fig. 2). 
The largest positive impact is found between 500 hPa 
and 700 hPa. Near the surface, the positive impact is 
degraded and turns to negative in some areas. 

6 FORECAST IMPACTS 

We have shown a significant beneficial impact of 
AIRS retrievals on the analysis, at least verified 
against the higher resolution operational NCEP 
analysis. We now test their impact on forecast skill. 
Global averaged 500-hPa temperature 48-hour 
forecasts RMS error are sought for the control run and 
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the AIRS run (figure omitted); forecasts are started 
only from 0000 UTC and 1200 UTC since the 
conventional data are sparser at 0600 UTC and 1800 
UTC in the control run. It is shown (figure omitted) 
that the AIRS run analyses lead to more accurate 
48-hour forecasts than the control run analyses in all 
the domains. Though the improvement in tropics or 
NH extratropics is smaller than that in SH extratropics, 
we can see that the positive impact from the 
assimilation of AIRS temperature retrievals is 
consistent with time. This improvement is also seen at 
other levels and for other variables (Fig. 6). In general, 
the positive impact of AIRS retrievals is larger in the 
SH but less apparent in tropics and the NH. 
 

 
Fig. 4. Same as the top-left panel in Figure 3, except for the 
zonal wind field 

 
Fig. 5. Time-longitude averaged vertical cross-section of the 
RMS error of the AIRS run analysis minus the RMS error of 
the control run analysis for the temperature field, averaged over 
the last 10 days in January 2004. Blue colors indicate better 

agreement of the AIRS run analysis with the operational 
analysis. 

7  CONCLUSION AND DISCUSSION  

We investigated the AIRS retrievals impact by 
comparing the control run assimilating all the NCEP 
operational non-radiance data and the AIRS run added 
AIRS temperature retrievals. The AIRS temperature 
retrievals have a consistent positive impact on both 
analyses and forecasts, which is found not only in the 
temperature field but also in other variables. This 
positive impact is biggest in SH extratropics but still 
significant in tropics and the NH extratropics. 

In our earlier tests, we did another experiment in 
which we arbitrarily assumed a constant 2-K error for 
AIRS temperature retrievals at all vertical levels in the 
LETKF assimilation. The result is worse than the 
current AIRS run, especially near the surface and at 
the upper levels. This is due to the different qualities 
of the AIRS temperature retrievals. As indicated in 
Fig. 2, the retrievals near the surface and in the upper 
levels are worse than those in the middle. Therefore, it 
is not a good assumption to use a constant observation 
error in the data assimilation. These indicate that there 
is a significant impact for having relatively accurate 
vertical error information. We also neglected the 
correlation of retrieval errors from different locations, 
which are difficult to estimate. We are exploring the 
possibility to estimate the observation error 
covariance of the retrievals based on the covariances 
of analysis and observational increments (Desroziers 
et al.[17]). This can be done online within the LETKF, 
as indicated by Li et al.[18]. 

It should be noticed that the control run in the 
current study does not include the assimilation of 
satellite radiance, resulting in a big impact of AIRS 
retrievals in the SH.  In an operational assimilation 
system with satellite radiance, the impact of AIRS 
retrievals could be reduced, especially in the SH. 

We plan to perform assimilation of both clear and 
cloud-cleared AIRS radiances and compare their 
impact with that of retrievals. Clear radiances are 
easier to assimilate because they are close to 
uncorrelated observational errors. The LETKF has the 
advantage that it does not require either the Jacobian 
or the adjoint of the radiative transfer model. 
Cloud-cleared radiances are much more abundant than 
clear radiances currently used in operations, but like 
the retrievals, they have correlated errors.
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Fig. 6. RMS error of 48-hour temperature (left) and zonal wind (right) forecast starting from the control run analyses 

(black) and AIRS run analyses (blue), both verified against the operational NCEP analyses. The averages are 
taken over all grid points in SH extratropics (top), tropics (middle) and in NH extratropics (bottom), and over 
a period between 0000 UTC 15 January 2004 and 1200 UTC 31 January 2004.
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