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Abstract: Storm identification and tracking based on weather radar data are essential to nowcasting and 
severe weather warning. A new two-dimensional storm identification method simultaneously seeking in 
two directions is proposed, and identification results are used to discuss storm tracking algorithms. Three 
modern optimization algorithms (simulated annealing algorithm, genetic algorithm and ant colony 
algorithm) are tested to match storms in successive time intervals. Preliminary results indicate that the 
simulated annealing algorithm and ant colony algorithm are effective and have intuitionally adjustable 
parameters, whereas the genetic algorithm is unsatisfactorily constrained by the mode of genetic operations. 
Experiments provide not only the feasibility and characteristics of storm tracking with modern optimization 
algorithms, but also references for studies and applications in relevant fields. 
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1  INTRODUCTION  

With the development of weather radar and computer 
technology, storm identification and tracking using radar 
systems are becoming an important technique for severe 
weather nowcasting. Using weather radar data, the storm 
identification, tracking and nowcasting is to detect storms 
already in existence, calculate their physical parameters, and 
match and track them based on continuous radar images to 
establish corresponding relations, and extrapolate their 
evolution and motion. 

Storm identification can be roughly classified into two 
categories: a cross-correlation method and a centroid method. 
With reflectivity data, the cross-correlation method calculates 
the motion vectors of subregions to obtain optimal correlation 
between subregions (Rinehart and Garvey[1]; Li et al.[2]). Due 
to the focus on regional scales, this method is difficult to 
obtain detailed storm information. By contrast, the centroid 
method (Crane[3]; Rosenfeld[4]; Handwerker[5]) can provide 
structure and evolution characteristics of storms. As a result, 
the centroid method draws more attention. 

After one or several reflectivity thresholds are determined, 
the commonly used centroid method takes three steps to 
perform three-dimensional identification: (1) contiguous 
sequences of points are searched and recorded along radials to 

constitute storm segments if reflectivity meets the threshold; 
(2) storm segments are searched and recorded to constitute 
storm components if continuity requirement is satisfied along 
neighboring radials on the same PPI scan; (3) storm 
components are searched and recorded to constitute storms on 
the PPI scans of different elevations. Currently, influential 
algorithms TITAN (thunderstorm identification, tracking, 
analysis and nowcasting) (Dixon and Wiener[6]) and SCIT 
(storm cell identification and tracking) (Johnson et al.[7]) are 
based on the steps described above. Its defect lies in that it 
needs to seek one-dimensional storm segments in radials and 
then compose them to two-dimensional storm components in 
azimuths based on specified continuity requirement, probably 
distorting shapes and boundaries of storms to cause 
identification error. 

After storms are identified in successive time intervals, 
they are matched and tracked for extrapolation forecast. The 
centroid tracking method assumes that the centroid can 
represent the storm location; thus, motion vectors can be 
obtained with corresponding distance changes through 
continuous radar echoes. Therefore, the centroid tracking 
method can provide detailed information about the motion and 
evolution of storms. Various echo parameters can be used for 
storm matching, including shape, area, centroid, azimuth, 
delay time, intensity distribution, moment vector, etc. Area 
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and centroid location are the two parameters usually used to 
match storms (Xiao et al.[8]). 

This study mainly discusses modern optimization 
algorithms on storm matching and tracking widely used in 
various fields. First, a simple and feasible two-dimensional 
storm identification method was designed to overcome the 
defect of the commonly used centroid identification method. 
The new method was able to identify storm cells in three 
successive time intervals based on data from a next-generation 
Doppler weather radar (NEXTRAD) in Nanjing. Then, storm 
matching was conducted using the general Hungarian method 
and manually to obtain results for reference. Afterwards, the 
three modern optimization algorithms described above were 
applied to match the storms. The new storm identification 
method is described in section 2. Storm matching and tracking 
is explained in section 3. The three modern optimization 
algorithms are briefly introduced in section 4. Storm matching 
experiments on the three optimization algorithms are carried 
out in section 5. A case that cannot be solved with the 
Hungarian method is presented in section 6 for further 
discussion of the three optimization algorithms, and 
conclusions are given at the end. 

2  THE NEW STORM IDENTIFICATION METHOD 

To overcome the defect of the storm identification method 
used in TITAN and conduct a test on the algorithms, a new 
storm identification method, able to search contiguous points 
simultaneously in two dimensions, was designed. The basic 
idea of this method is simple. First, a threshold is determined 
in advance. Then points with reflectivity exceeding the 
threshold are identified to serve as storm points. Afterwards, 
contiguous storm points constituting a storm are sought group 
by group until all storms have been searched. Contiguous 
points are defined as the eight points around a reference point 
on a two-dimensional plane. 

Before searching, all contiguous storm points are located. 
In the first round of search, a storm point serves as the initial 
reference point to search for all other storm points in the 
second round; the initial reference point is excluded in this 
round to avoid repeated search. The storm points contiguous to 
the initial reference point in the second round serve as the 
reference points in the third round; after search, each reference 
point and its contiguous points are eliminated from the round 
of search by the next reference point to avoid repeated search. 
This procedure is repeated one after another until no storm 
points can be sought contiguous to the reference points in a 
search round. Then the storm points that have been sought in 
these rounds constitute a storm. Other storms are searched in 
the same way until all storm points have been sought. Figure 1 
is a schematic diagram of the method of searching contiguous 
points. After all storm cells are identified, those with area less 
than a preset threshold are eliminated for noise filtering. 

With the new method, storms in three successive time 
intervals (at 0949 UTC, short for Coordinated Universal Time, 
0955 UTC and 1001 UTC on 17 May 2006, and represented 
by t1, t2 and t3, respectively) were identified in terms of the 
reflectivity data of the lowest angle of elevation or PPI 
collected by the NEXTRAD in Nanjing. The reflectivity and 
area thresholds were set to be 40 dBZ and 10 km2, 
respectively. Figure 2 shows the results identified with the 
new method and storm serial numbers. The total number of 
storms was 13, 14 and 10 for t1, t2 and t3, respectively. 
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Fig. 1. Schematic diagram of the contiguous points searching 
method. R represents a storm point with reflectivity exceeding 
the threshold. The numeral at the top left corner of a box 
represents the serial number of the storm to which a storm 
point belongs. The numeral at the top right corner represents 
the serial number of the round in which a storm point is being 
searched. 

3  STORM MATCHING AND TRACKING 

When storms at successive points of time are identified, 
they need to be matched with each other to determine 
corresponding storms. Hence, storm matching between two 
successive points of time is to decide which logically possible 
path is most likely the true one. If matching is done in 
successive time intervals, storms can be tracked through their 
entire life cycles. Storm matching is conducted based on two 
main assumptions: 1) A correct match connects storms by 
shorter rather than longer paths; 2) A correct match joins 
storms of similar characteristics. 

It is supposed that there are n1 storms at t1 and storm i at 
t1 is in a state s1i=(x1i, y1i, a1i), and there are n2 storms at t2 and 
storm j at t2 is in a state s2j=(x2j, y2j, a2j). The cost function Cij 
(in unit of distance) can be defined as Cij=w1·dp+w2·da; the 
difference in position between the centroid of storm i at t1 and 
that of storm j at t2 is 2 2 1/2

2 1 2 1[( ) ( ) ]p j i j id x x y y= − + − , 

the difference in area (also in unit of distance, because of the 
square root) between storm i and storm j is 

1/2 1/2
2 1( ) ( )a j id a a= − , and w1 and w2 are weight factors (both 

set at 1.0 here). In this way, the problem of determining the 
true set of storm paths may be posed and solved as one of 
optimization. The optimal set of paths is to find the match that 
minimizes the objective function Q=∑Cij, where i refers to 
the start point of a path (storm i at t1) and j the corresponding 
end point (storm j at t2), and the summation is performed over 
all possible sets of storm paths. It is assumed that the optimal 
set of paths and the true set are the same. 
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Fig. 2. Results for t1 (a, b), t2 (c, d) and t3 (e, f) at 0.5° angle of elevation or PPI with the new identification method. Identified 

storms are each assigned with an initial serial number.

In fact, storm matching is equivalent to the assignment of 
tasks widely used in everyday life. A common assignment 
problem can be described as follows (workers and tasks are 
taken for example). There are m tasks that must be 
accomplished by n workers (unequal quantity between 
workers and tasks is allowed in this study with n≥m). Each 
task must be accomplished by only one worker and each 
worker can accomplish one task at most. Each worker 
performs better at some tasks than at others and obviously the 
costs at which he accomplishes different tasks are different. 
The goal is how to assign the workers to the tasks in order to 
minimize the total cost for accomplishing all of the tasks. 

A solution to the assignment problem is just a 
permutation selecting m tasks from n workers and namely, 
worker N (1≤N≤n) is assigned to accomplish task M (1≤M≤m). 
The feasible solution number of the assignment problem is 

m
nP . Therefore, permutation form S=(P1, P2,…, Pn) is adopted 

for storm matching results in this article. If storm j at t2 is 
matched with storm i at t1, Pi=j. If no storm at t2 matches with 
storm i at t1 (storms at t1 are more than those at t2), Pi=0. 

If the cost at which worker i accomplishes task j is Cij (i 
=1,2,…, n; j=1,2,…, m), the matrix 
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is termed the cost matrix, in which elements in row i represent 
the costs at which worker i accomplishes the tasks and 
elements in column j represent the costs of task j accomplished 
by workers. 0–1 variables are introduced. If worker i is 
assigned to accomplish task j, xij=1; otherwise xij=0. The 
mathematic model to minimize the total cost for the 
assignment problem can be written as (Li[9]) 

1 1
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n m

ij ij
i j
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It means that given an n×m matrix Cij, it is to find an n
×m matrix Xij such that the following holds: 1) In any given 
row or column, Xij has exactly one non-zero element and that 
element has the value of 1; 2) The sum of CijXij over all i, j is 
a minimum. Generally, the Hungarian method is implemented 
for the assignment problem to seek matrix Xij (Lawler[10]; 
Roberts[11]). Detailed operations of the Hungarian method can 
be referred to in corresponding references. 

Based on the identification results of t1, t2 and t3, storms 
are matched between t1 and t2 (Case 1), and between t2 and t3 
(Case 2). Merger or split storms are excluded before matching; 
storms 11 and 12 at t1 merged to storm 12 at t2, and storms 10 
and 11 at t2 merge to storm 7 at t3 (Fig. 2). The rest of the 
storms are assigned with new serial numbers according to 
their previous numbers. At t1, for example, the numbers of the 
first ten storms remain the same whereas storm 13 is given a 
new number 11 to fill up the vacancy. The cost matrices of the 
two cases are B1 and B2 (see Appendix). 

Because there are more storms at t1 than at t2, for the 
purpose of conforming to the defined concept of the 
assignment problem and in favor of the uniform calculation 
and comparison, t1 and t2 exchange their orders in storm 
matching in Case 1 (the cost matrix just needs a transposition). 
Matching results given by the Hungarian method are: 1, 2, 3, 4, 
0, 5, 6, 8, 7, 9, 10, 0, 11 (Case 1), and 1, 2, 3, 4, 0, 5, 6, 0, 7, 
8, 0, 9 (Case 2). The corresponding total cost values are 
52.083 and 42.082, respectively. Manual analysis agrees with 
the matching results (Fig. 2). 

4  BRIEF INTRODUCTION TO MODERN 
OPTIMIZATION ALGORITHMS 

When the assignment problem becomes rather complex 
(for instance, the order of the cost matrix is quite large) or for 
some particular calculation processes (Chu[12]; Gu et al.[13]), 
the Hungarian method may not resolve the problem effectively. 
More and more studies use the heuristic algorithms—widely 
discussed and applied since the 1980s—to solve a large 
amount of actual assignment problems. These algorithms 
mainly include the simulated annealing algorithm, genetic 
algorithm and ant colony algorithm. Through comparing with 
the solution to the optimization problem based on some 
natural phenomena in the objective world, common characters 
are identified to establish corresponding algorithms and 
optimal solutions are achieved by iteration. The three 
algorithms are briefly introduced as follows (Xing and Xie[14]). 

4.1  Simulated annealing algorithm 

The simulated annealing algorithm was invented by 
Metropolis in 1953 and applied successfully in the 
optimization problem by Kirkpatrick in 1983. 

Annealing denotes a physical process in which a metal 
object is heated up by increasing the temperature to a certain 
value at which all molecules randomly arrange themselves in 
the phase space. With decreasing temperature, these 
molecules gradually keep themselves in different states. 

Statistical mechanics indicates that at temperature T, the 
probability of being in a state r for a molecule is given by the 
Boltzmann distribution 

1 ( ){ ( )} exp( )
( ) B

E rP E E r
Z T k T

= = − , where ( )E r  

represents the energy in state r, Bk >0 is the Boltzmann 

constant, E  is a random variable denoting the molecule 
energy, and ( )Z T  is a normalization factor. 

It can be seen from the Boltzmann distribution that the 
probability of a molecule being in a state with lower energy is 
larger than that with higher energy. When temperature is 
sufficiently high, the probability of a molecule being in each 
state is almost the same and closes to the mean value. As 
temperature decreases, the Boltzmann distribution 
concentrates on states with the lowest energy; as temperature 
approaches zero, only the states with minimum energy have a 
non-zero probability of occurrence. 

Simulated annealing can be analogous to the optimization 
problem so that the solution to this problem can be 
corresponding to the state with the lowest energy in the 
annealing process, which has the maximum probability for 
molecules at the minimum temperature. 

There are an internal and an external loop in the 
simulated annealing algorithm. The internal loop denotes a 
random searching among some states at the same temperature, 
and the external loop includes temperature decrease and 
terminating conditions. An intuitive understanding of the 
simulated annealing is that the searching is randomly switched 
from one state to another at a certain temperature. The times 
the state is searched with obey a probability distribution; when 
temperature is sufficiently low, an optimal solution is achieved 
with the probability of 1. Each iterative step reflects 
equilibrium between the concentration and diffusion policies. 
When a given successive iterative solution is better, the 
concentration policy is used and this solution is made the new 
solution; when the successive iterative solution is not better, 
the diffusion policy is used and this solution becomes the new 
solution subject to a certain probability. 

4.2  Genetic algorithm 

The genetic algorithm was developed by Professor 
Holland from the University of Michigan at the beginning of 
the 1970s. An initial achievement was the publication of 
Adaptation in Natural and Artificial Systems by Holland. 

The genetic algorithm takes up the concept of survival of 
the fittest in biological evolution. In other words, a population 
more suitable to the natural environment generates more 
progenies. The genetic algorithm uses some biological 
evolution characteristics for references. (1) Evolution takes 
place at solution codes which are called chromosomes. All 
properties of the optimization problem are studied through 
these codes. (2) Natural selection determines that the 
chromosomes have the capacity of generating more progenies 
than the others through an artificial fitness function according 
to the aim of the optimization problem. (3) When crossover is 
carried out for chromosomes, the recombination of genes 
makes the children keep the characteristics of their parents. (4) 
Random mutation can cause the children to be different from 
their parents. 

The biological evolution can be analogous to the 
optimization problem so that the solution of the optimization 
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problem can be corresponding to individuals having the largest 
number after evolutions of the original population. 

The genetic algorithm primarily includes steps as follows. 
First, coding is needed for the optimization problem. A 
solution code is called a chromosome and the components 
constituting the chromosome are called genes. Coding is used 
to indicate the solution pattern and to help the calculation in 
the genetic algorithm. Second, a fitness function is constructed, 
which basically depends on the cost function of the 
optimization problem. The chromosomes surviving or dying 
out are determined by the probability distribution calculated 
from the fitness function under the natural selection rule. The 
surviving chromosomes make up of the population which can 
generate individuals of the next generation. Thirdly, crossover 
is performed. The recombination of genetic genes produces the 
next generation through the crossover of codes. The emergence 
of a new generation is a reproduction process, creating new 
solutions. The last one is the mutation. Gene mutation takes 
place through the production of a new solution and it can 
change codes of some solutions, bringing more ergodicity. 

4.3  Ant colony algorithm 

The ant colony heuristic algorithm was proposed by 
Marco Dorigo in 1992 in his PhD thesis based on which a fine 
optimization algorithm has been gradually developed. This 
algorithm is a distributed intelligence simulation algorithm, 
with its basic idea imitating the social conduct of ants during 
communication depending on the pheromone. 

In the real world, ants in a colony communicate with each 
other through the pheromone medium. Ants wander randomly, 
and upon finding food they return to their own colony while 
laying down some trails of chemical substances called 
pheromone. The pheromone can be sensed by other ants in the 
same colony, and serves as a signal affecting the latecomers. 
Therefore, ants are more likely to follow the paths with 
pheromone rather than those without pheromone, and they 
reinforce the original pheromone iteratively. As a result, the 
more ants pass a path, the more probably ants will select it. 
Over a given period of time, the shorter the path, the more 
ants will visit it, accumulating more pheromone. In the 
subsequent period of time, the probability for this path to be 
visited by other ants is larger than any other paths. This 
positive feedback eventually results in all the ants following a 
single path. 

The social conduct in an ant colony can be analogous to 
the optimization problem so that the solution of the 
optimization problem can be corresponding to the final path 
selected by all the ants through the pheromone. 

Imitating the behavior of ants, the paths of artificial ants 
in the ant colony algorithm are determined by two categories 
of parameters. One is the pheromone value or the pheromone 
trail, which is the memory information of ants. The other is 
the visibility value or the priori value, which is the cost of 
paths. The update of the pheromone is implemented by two 
operations. One is the evaporation; it is to reduce the 
pheromone as in the natural world. Pheromone evaporation 
also has the advantage of avoiding a fast convergence to a 
local optimal solution and extending the search range. The 
other is the enhancement. The pheromone on a path with a 
high appraisal value is enhanced to make the optimal solution 
converge stably. 

The movement of an ant is executed by a random decision 
rule that uses the information stored in corresponding nodes to 
calculate the probability of subsequent nodes the ant could 

reach. According to the probability distribution, the ant moves 
a step by which the solution yielded by the ant colony 
gradually approaches the optimal solution. When an ant finds 
a solution or in the process of finding a solution, it can 
evaluate the optimization degree of this solution (or parts of 
this solution) and save the evaluated information in the 
corresponding pheromone trail which can conduct the ant in 
future seeking. 

5  TRACKING STORMS WITH MODERN 
OPTIMIZATION ALGORITHMS 

Based on the cost matrices of the storm identification 
results for Case 1 and Case 2, the simulated annealing 
algorithm, genetic algorithm and ant colony algorithm are used 
to track storms. For illustration and convenience, all three 
algorithms adopt explicit decimal coding for the permutation 
solution (S=(P1, P2,…, Pn)) of the assignment problem. It is 
the most common coding for assignment problems based on 
which operators are implemented. 

5.1  Storm matching with simulated annealing algorithm 

5.1.1 ALGORITHM STEPS 
The following steps are referred to in Duan and Chen[15] 

and Wu and Dong[16]. 
Step 1. Original temperature t0 and original solution i0 are 

given. Some permutations representing different states of 
molecules are randomly created which constitute the solution 
space D. t0=Kδ  is adopted for the original temperature, 
where K is a sufficiently large number andδ=max{f(s)|s∈
D}-min{f(s)| s∈D}. max{f(s)|s∈D} and min{f(s)| s∈D} are 
the maximum and minimum cost value in the solution space, 
respectively. The solution with the minimum cost value is 
selected as the original solution i0, representing the state with 
the lowest energy at the original temperature. 

Step 2. If the terminating condition of the internal loop is 
satisfied at temperature tk, go to Step 3; otherwise a new 
permutation is created by exchanging the location of two 
randomly selected elements in the permutation. This process is 
repeated to obtain a neighborhood L(i) constituted by several 
new solutions. A permutation j is selected randomly from L(i) 
and the cost difference between i and j, Δfij=f(j)-f(i), is 
calculated. If Δfij<0, i is replaced by j; otherwise if 
exp(-Δfij/tk)>r (r is a random variable distributed between 0 
and 1), i is replaced by j. Step 2 is repeated. Given n workers 
and m tasks, the number of newly created solutions would not 
exceed 2

nC . Therefore, iteration times n(n-1)/2 is set to be the 
terminating condition of the internal loop. 

Step 3. Temperature tk is decreased gradually. When it is 
below the terminating temperature te during the cooling 
process, the algorithm is terminated; otherwise go back to Step 
2. tk+1=αtk is chosen as the cooling function, where α is the 
cooling coefficient. 

5.1.2 ALGORITHM EXPERIMENTS 
Because the probability of the Boltzmann distribution 

decreases exponentially as temperature decreases, it is 
increasingly less probable for a molecule to stay in an unstable 
state and increasingly easy for it to stay in a stable state. 
Therefore, the temperature decrease itself is a converging 
process. When temperature approaches 0, the probability 
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approaches 1 for the lowest energy states and the 
corresponding solution is close to the optimal. Experiments on 
the two cases indicate that results converge to the optimal 
solution more quickly as the terminating temperature 
decreases and the cooling coefficient increases. The iteration 
process has a larger neighborhood space for searching as the 
cooling coefficient increases, and the molecule is much easier 
to be in the most stable energy state as the terminating 
temperature decreases. However, both of them could 
remarkably affect the calculation time. When a small cooling 
coefficient and a big terminating temperature are given, 
temperature decreases to the terminating point quickly, 
yielding a short calculation time. When a big cooling 
coefficient and a small terminating temperature are given, 
temperature decreases slowly, yielding a relatively long 
calculation time. Because there would not be many storms in 
each time interval, an appropriate cooling coefficient and 
terminating temperature can be acquired to achieve a desirable 
result. 

The terminating temperature is set to 5, 1 and 0.1, and 
the cooling coefficient is set to 0.2, 0.5 and 0.8, respectively. 
Each scheme is tested 10 times to determine mean total costs, 
total cost standard deviations, appearing times of correct 
solution and average calculation time. 

Table 1. Calculation results for Case 1 

Term
inating 

tem
perature 

C
ooling 

coefficient 

M
ean total cost 

Total 
cost 

standard 
deviation 

A
ppearing 

tim
es 

of 
correct 
solution  

A
verage 

calculation 
tim

e/s 

0.2 231.51 60.195 0 0.036 
0.5 103.83 44.321 3 0.078 5 
0.8 64.445 21.66 7 0.22 
0.2 201.43 172.45 0 0.041 
0.5 54.7 8.277 9 0.091 1 
0.8 52.083 0 10 0.269 
0.2 61.634 21.763 8 0.053 
0.5 53.451 4.328 9 0.111 0.1 
0.8 52.083 0 10 0.336 

Table 2. Calculation results for Case 2. Parameter settings and 
experiment items are the same as in Table 1. 

Term
inating 

tem
perature 

C
ooling coefficient 

M
ean total cost 

Total cost standard 
deviation 

C
orrect solution 

appearing tim
es 

A
verage calculation

tim
e/s 

0.2 196.05 89.633 0 0.03 
0.5 66.784 23.405 3 0.066 5 
0.8 45.192 6.556 8 0.189 
0.2 95.545 64.391 4 0.036 
0.5 47.217 16.24 9 0.078 1 
0.8 42.082 0 10 0.224 
0.2 62.779 32.284 6 0.044 
0.5 42.082 0 10 0.094 0.1 
0.8 42.082 0 10 0.281 

5.2  Storm matching with genetic algorithm 

5.2.1 ALGORITHM STEPS 
The following steps are referred to in Li et al.[17], Zhang 

and Xiu[18] and Wu[19]. 
Step 1. N permutations are created randomly. They are 

the first generation P(1) having N chromosomes. 
Step 2. The fitness value fi is calculated for each 

chromosome pi(g) in generation P(g). The fitness function is 
an index to measure the chromosome fitness, and serves as a 
basis in genetic operations. fi=k*Cmax-ci is adopted as the 
fitness function, where ci is the cost of an individual, Cmax is 
the maximum cost in current population and k is a constant 
(set to be 1.1 here). It can be seen that an individual with a 
small cost value has a big fitness value and thus the 
probability with which it is preserved is big. 

Step 3. If the terminating condition is satisfied, the 
algorithm is terminated; otherwise the roulette wheel 
probability is calculated for each individual. A maximum 
generation number G is taken as the terminating condition in 
this article. The roulette wheel probability has the form of 

1
/

N

i i i
i

p f f
=

= ∑ , where pi is the selecting probability of 

individual i, fi is the fitness value of i, and 
1

N

i
i

f
=

∑  is the 

accumulated fitness value of generation P(g). 
Step 4. In order to keep the genetic information of good 

individuals, ND individuals in generation P(g) are selected 
according to the roulette wheel probability of fitness values to 
be copied into the next generation. DP(g+1) for the next 
generation is obtained after the copy operation. 

Step 5. NC individuals in generation P(g) are selected 
according to the roulette wheel probability of fitness values, 
and crossover is executed for each pair of individuals. A place 
for crossover is chosen randomly and then the sections of the 
gene are exchanged between the front and back of the 
crossover place for the two individuals. For instance, parent A 
is 501243 and parent B is 251304. The crossover place is 
chosen to be 4 so that the two children are child a 501204 and 
child b 251314, respectively. It can be seen that crossover can 
lead to irrational individuals. Therefore, additional adjustment 
is needed. Repeated elements are replaced with those who 
have not appeared. The two children would be 501234 and 
531204 or 251340 and 251043 after the adjustment. CP(t+1) 
for the next generation is obtained after the crossover 
operation. 

Step 6. NM individuals in generation P(g) are selected 
according to the roulette wheel probability of fitness values. 
Two randomly selected elements in an individual are 
exchanged for mutation. MP(g+1) is obtained for the next 
generation after the mutation operation. ND+NC+NM=N, and 
the DP (g+1), CP(g+1) and MP(g+1) compose the next 
generation. Go back to Step 2. 

Studies have proved that genetic operators like crossover 
and mutation could destroy the gene part of high fitness values 
and generate bad individuals, leading to a local optimal 
solution instead of global optimal solution (Rudolph[20]). 
Nevertheless, genetic algorithms with the elitist strategy (De 
Jong[21]) can converge probabilistically to the global optimal 
solution (Eiben et al.[22]). The elitist strategy adopted in the 
article is as follows (Wang et al.[23]): (1) Two individuals with 
respectively maximum and minimum fitness values are 
identified; (2) If the fitness value of the optimal individual in 
the current generation has been less than that of the global 
optimal individual up to the present, the optimal individual 
serves as the global optimal; (3) The worst individual in the 
current generation is replaced with the global optimal. 

5.2.2 ALGORITHM EXPERIMENTS 
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The population size is set to 40, 80 and 120, respectively. 
The maximum generation number is set to 50, 100 and 200, 
respectively. The copy, crossover and mutation ratios are set to 
① (0.1, 0.8, 0.1), ② (0.2, 0.75, 0.05) and ③ (0.4, 0.5, 0.1), 
respectively. Each scheme is tested 10 times, achieving mean 
total costs, standard deviations total cost, appearing times of 
correct solution and average calculation time. 

Table 3. Calculation results of Case 1 

Population size 

M
axim

um
 

generation num
ber 

R
atio Schem

e 

M
ean total cost 

Total cost standard 
deviation 

C
orrect solution 

appearing tim
es 

A
verage 

calculation tim
e/s 

① 173.81 85.995 1 0.503 

② 196.65 60.798 0 0.475 50 

③ 221.99 56.332 0 0.331 

① 83 31.832 3 0.995 

② 102.12 23.188 1 0.934 100 

③ 121.94 57.167 3 0.65 

① 59.463 16.362 8 1.939 

② 63.756 19.974 7 1.806 

40 

200 

③ 54.819 5.77 8 1.302 

① 162.08 68.292 0 1.023 

② 170.95 48.287 0 0.967 50 

③ 152.43 72.102 1 0.683 

① 122.01 36.433 1 2.016 

② 91.121 37.116 3 1.87 100 

③ 102.48 31.628 2 1.352 

① 71.521 38.233 7 4.008 

② 55.107 9.564 9 3.7 

80 

200 

③ 67.997 32.454 7 2.639 

① 160.83 45.865 0 1.555 

② 129.07 59.35 1 1.455 50 

③ 174.74 47.427 0 1.034 

① 92.306 37.434 4 3.061 

② 88.62 42.188 4 2.873 100 

③ 98.018 26.225 1 2.05 

① 65.328 22.125 7 6.033 

② 52.083 0 10 5.65 

120 

200 

③ 60.55 18.74 8 4.063 
 

 

Table 4. Calculation results of Case 2. Parameter settings and 
experiment items are the same as in Table 3. 

Population size 

M
axim

um
 

generation num
ber 

R
atio Schem

e 

M
ean total cost 

Total cost standard 
deviation 

C
orrect solution 

appearing tim
es 

A
verage calculation 

tim
e/s 

① 92.173 45.199 2 0.498 

② 139.99 50.27 0 0.472 50 
③ 129.36 69.417 1 0.334 

① 73.398 33.744 3 1 

② 85.039 36.886 3 0.914 100 
③ 80.966 38.484 3 0.656 

① 42.082 0 10 1.958 

② 45.601 7.48 8 1.825 

40 

200 
③ 53.024 18.608 6 1.277 

① 108.46 55.422 2 1.03 

② 116.72 39.747 0 0.983 50 
③ 121.16 35.833 0 0.681 

① 59.646 28.788 6 2.019 

② 57.322 16.89 5 1.872 100 
③ 74.563 30.38 4 1.4 

① 44.046 6.21 9 4.164 

② 42.082 0 10 3.702 

80 

200 
③ 42.082 0 10 2.619 

① 68.748 34.507 5 1.556 

② 98.137 24.444 1 1.442 50 
③ 140.61 50.301 1 1.027 

① 42.082 0 10 3.069 

② 55.601 31.518 8 2.866 100 
③ 42.082 0 10 2.027 

① 44.046 6.21 9 6.045 

② 42.082 0 10 5.578 

120 

200 
③ 42.082 0 10 4.044 

It can be seen that the maximum generation number has 
an important impact on the results. When it is relatively small, 
mean total costs and appearing times of correct solutions are 
both unfavorable in spite of the population size. Results 
become desirable as the maximum generation number 
increases. It means that the convergence process for the 
optimal solution is slow and needs multiple generations. In 
general, the genetic algorithm is unsatisfactory for storm 
tracking since it cannot achieve the optimal solution and 
wastes computation resources. That is caused by the 
characteristics of genetic operations, especially the crossover 
is playing a vital role in searching solution spaces. If the two 
parents are relatively excellent solutions with small costs, the 
children can be quite different from the parents due to the 
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breakdown of good gene segments and the adjustment of 
irrational solutions. It causes the iteration to deviate from the 
correct searching direction and causes the algorithm 
randomness to decline. Although the elitist strategy is 
included and the revised algorithm has remarkable 
improvement over the original one (figures and tables are 
omitted), results are still barely satisfactory. 

Different relative ratios of the copy and crossover have 
different effects on the results. Large copy ratios and small 
crossover ratios can keep the good gene segments of 
individuals, but they also reduce the neighborhood for 
searching and lead to a local optimal solution. Large crossover 
ratios and small copy ratios can enlarge the neighborhood for 
searching, but lead to unstable solutions. Additionally, large 
crossover ratios can increase remarkably the calculation time. 
Therefore, proper ratios are needed to acquire a desirable 
result. Of the three ratio schemes the best results for the two 
cases are concluded in Table 5. It can be seen that for a given 
population size, the ratio scheme with the best results always 
changes along the direction at which the crossover ratio is, in 
turn, large (① ), small (③ ) and moderate (② ), as the 
maximum generation number increases. This phenomenon can 
be explained as follows. When the population size and the 
maximum generation number are relatively small, a large 
crossover ratio is needed to accomplish the neighborhood 
searching due to few iteration times. As a result, it is the 
neighborhood searching that is most beneficial to the optimal 
solution so that Scheme ①—with a large crossover ratio—is 
the best. When the population size and the maximum 
generation number are moderate, a large crossover ratio could 
cause the solution to be unstable and away from the optimal 
solution. In this case it is the steady convergence that is most 
beneficial to the optimal solution so that Scheme ③—with a 
small crossover ratio and a large copy ratio—is the best. When 
the population size and the maximum generation number are 
relatively large, a large crossover ratio could cause the 
solution to be away from the optimal solution while a small 
crossover ratio could cause the solution to sink into local 
optima. Therefore, Scheme ②—with a moderate crossover 
ratio—is the best. Results also depend on cost matrices. In 
Case 1, when the population size and the maximum generation 
number increase to 80 and 100, respectively, Scheme ② 
becomes the best. By contrast, the solution space of the cost 
matrix in Case 2 is more complicated and needs more 
iterations to search. As a result, when the population size and 
the maximum generation number increase to 120 and 200, 
respectively, Scheme ② becomes the best. 

Table 5. Best ratio schemes for different population sizes and 
maximum generation numbers in the two cases 

Case 1 Case 2 Population size 

M
axim

um
 

generation 
num

ber 

B
est ratio 
schem

e 

Population size 

M
axim

um
 

generation 
num

ber 

B
est ratio 
schem

e 

50 ① 50 ① 
100 ① 100 ① 40 
200 ③ 

40 

200 ① 
50 ③ 50 ① 
100 ② 100 ① 80 
200 ② 

80 

200 ③ 
50 ② 50 ① 
100 ② 100 ③ 120 
200 ② 

120 

200 ② 

5.3  Storm matching with ant colony algorithm 

5.3.1 ALGORITHM STEPS 

The following steps are referred to in Yin et al.[24]. 
Step 1. Information is initialized. Each component in the 

cost matrix serves as a node given a two-dimensional 
coordinate (i, j) representing that storm i at t1 is matched with 
storm j at t2. A random permutation is created and its cost f0 is 
calculated. Meanwhile, each node is attached with an equal 
amount of pheromone h0=1/f0. The tabu node assemble is 
initialized to be empty. 

Step 2. If the maximum search round is achieved, the 
calculation is terminated; otherwise ants select node vij from 
the assemble of remaining nodes according to the following 
policy 

0

0

arg max{ ( ) / ( ) },
( , )

{ ( ) / ( ) },
r

r

v V

v V

h v c v q q
i j

p h v c v q q

α β

α β

∈

∈

 ≤
= 

>


. ( 3) 

When an ant chooses a node, not only this node but also 
nodes with the same row and column coordinates are listed in 
the tabu node assemble to ensure a one-one correspondence 
for storm matching and to reduce searching times for ants. rV  
represents remaining nodes excluding those in the tabu 
assemble. h(v) is the pheromone value at node v, and c(v) is 
the cost of node v. arg max{ ( ) / ( ) }

rv V
h v c vα β

∈
 and 

{ ( ) / ( ) }
rv V

p h v c vα β

∈
 are respectively the subscript of the 

node whose ( ) / ( )h v c vα β  value is the maximum and the 

node selected by roulette wheel in rV , where α and β are two 
parameters determining the relative impact between the 
pheromone and node cost and they are both set to 1 here. q is a 
random variable equally distributed between 0 and 1. q0 is a 
threshold parameter for q and it indicates the probability of an 
ant choosing the current best node. 

Step 3. Pheromone is locally updated. When an ant 
chooses node vij, the pheromone at vij is updated through hij = 
(1-ξ) hij+ξh0, where 0<ξ<1 andξis the local update 
coefficient. The update reflects an integrated effect of 
evaporation and enhancement, avoiding quick concentration to 
local optimal regions while in favor of stable convergence to 
the optimal solution. 

Step 4. Pheromone is globally updated. When all ants 
achieve local optimal paths, a global optimal path is singled 
out from these paths. The pheromone is globally updated 
according to (1 ) , ( , )op op

ij ij ijh h h i j Wρ ρ= − + ∆ ∀ ∈ , 

where ρ is the global update coefficient and 0 <ρ ≤1, 
1 /op op

ijh C∆ =  is the pheromone increment, opC  is the 

total cost of the current global optimal path, and opW  is the 
current optimal path. The pheromone update is only executed 
on nodes constituting opW  rather than all nodes. Go back to 
Step 2. 

5.3.2 ALGORITHM EXPERIMENTS 

It can be seen that when the threshold and global update 
coefficient are large and the local update coefficient is small, 
results are desirable. A small local update coefficient makes 
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the original pheromone influence decrease quickly and keeps 
more pheromone laid down by ants. A large global update 
coefficient gives additional pheromone to nodes on the optimal 
path searched in each round and reinforces the positive 
feedback. A large threshold makes ants more likely to select 
nodes with more pheromone and less cost. All of these three 
parameters can accelerate the convergence to achieve the 
optimal solution. Therefore, when the ant colony algorithm is 
applied to storm tracking, a large threshold parameter, a large 
global update coefficient and a small local update coefficient 
as well as adequate ants and search rounds can lead to a 
desirable result with a short calculation time. 

Table 6. Calculation results of Case 1 

Threshold param
eter 

G
lobal update 
coefficient 

Local update 
coefficient 

M
ean total cost 

Total cost standard 
deviation 

C
orrect solution 

appearing tim
es 

A
verage calculation 

tim
e /s 

0.2 74.735 24.347 4 0.155 

0.5 86.681 28.296 2 0.153 0.2 

0.8 76.079 21.6 2 0.155 

0.2 54.819 5.77 8 0.158 

0.5 64.447 12.1 4 0.158 0.5 

0.8 88.127 15.351 0 0.158 

0.2 52.082 0 10 0.158 

0.5 61.988 15.456 6 0.155 

0.3 

0.8 

0.8 66.206 14.888 4 0.152 

0.2 60.054 11.101 6 0.155 

0.5 61.401 13.687 6 0.156 0.2 

0.8 61.83 14.636 6 0.152 

0.2 53.451 4.328 9 0.155 

0.5 61.83 15.053 6 0.153 0.5 

0.8 61.422 10.85 5 0.153 

0.2 56.634 14.393 9 0.156 

0.5 56.475 10.05 8 0.155 

0.6 

0.8 

0.8 68.88 18.066 5 0.156 

0.2 53.451 4.328 9 0.153 

0.5 52.082 0 10 0.156 0.2 

0.8 53.451 4.328 9 0.152 

0.2 53.451 4.328 9 0.155 

0.5 53.451 4.328 9 0.155 0.5 

0.8 59.934 12.643 7 0.153 

0.2 52.082 0 10 0.155 

0.5 63.366 14.63 6 0.153 

0.9 

0.8 

0.8 57.556 7.067 6 0.153 

The number of ants and search round are both set to 10. 
The threshold parameter is set to 0.3, 0.6 and 0.9, respectively. 

The global update coefficient is set to 0.2, 0.5, and 0.8, and 
the local update coefficient is set to 0.2, 0.5, and 0.8, 
respectively. Each scheme is tested 10 times, achieving mean 
total costs, total cost standard deviations, appearing times of 
correct solution and average calculation time. 

Table 7. Calculation results of Case 2. Parameter settings and 
experiment items are the same as in Table 6. 

Threshold 
param

eter 

G
lobal update 
coefficient 

Local update 
coefficient 

M
ean total cost 

Total cost 
standard 
deviation 

C
orrect 

solution 
appearing tim

es 

A
verage 

calculation 
tim

e /s 

0.2 74.735 24.347 4 0.155 

0.5 86.681 28.296 2 0.153 0.2 

0.8 76.079 21.6 2 0.155 

0.2 54.819 5.77 8 0.158 

0.5 64.447 12.1 4 0.158 0.5 

0.8 88.127 15.351 0 0.158 

0.2 52.082 0 10 0.158 

0.5 61.988 15.456 6 0.155 

0.3 

0.8 

0.8 66.206 14.888 4 0.152 

0.2 60.054 11.101 6 0.155 

0.5 61.401 13.687 6 0.156 0.2 

0.8 61.83 14.636 6 0.152 

0.2 53.451 4.328 9 0.155 

0.5 61.83 15.053 6 0.153 0.5 

0.8 61.422 10.85 5 0.153 

0.2 56.634 14.393 9 0.156 

0.5 56.475 10.05 8 0.155 

0.6 

0.8 

0.8 68.88 18.066 5 0.156 

0.2 53.451 4.328 9 0.153 

0.5 52.082 0 10 0.156 0.2 

0.8 53.451 4.328 9 0.152 

0.2 53.451 4.328 9 0.155 

0.5 53.451 4.328 9 0.155 0.5 

0.8 59.934 12.643 7 0.153 

0.2 52.082 0 10 0.155 

0.5 63.366 14.63 6 0.153 

0.9 

0.8 

0.8 57.556 7.067 6 0.153 

6  COMPARATIVE EXPERIMENT ON MODERN 
OPTIMIZATION ALGORITHMS 

Because the order of the cost matrix corresponding to the 
number of identified storms between successive time intervals 
may not be very large in actual situations, the three modern 
optimization algorithms could not show their advantages in 
just two storm matching cases. In order to further verify their 
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effect on the assignment problems and highlight the 
characteristics, a case of assignment problem which cannot be 
solved by the Hungarian method was presented here to test 
their capability. An improved Hungarian method still did not 
achieve the actual optimal solution of the assignment problem 
(Gu et al.[13]; Yin et al.[24]). The cost matrix of this assignment 
problem is B3 (see the Appendix) and its minimum cost is 26. 
Experiments on this case are implemented 50 times for the 
simulated annealing algorithm, genetic algorithm and ant 
colony algorithm, respectively. 

The parameters in the simulated annealing algorithm are 
set as: cooling coefficient α=0.8, terminating temperature 
te=0.1. Figure 3 shows the convergence process of a best 
global optimal solution among the experiments. It can be seen 
that the fluctuation of the global optimal solution is 
remarkable and usually tends to be worse (while the cost is 
increased). However, the convergence becomes gradually 
faster and approaches the optimal solution as temperature 
decreases to the terminating point. Because the temperature 
decrease is a convergent process according to the Boltzmann 
distribution, the probability with which a molecule stays in the 
most stable state becomes gradually larger in the cooling 

process. In addition, adjustable parameters are intuitional, and 
therefore the simulated annealing algorithm is convenient and 
reliable for the assignment problem. 

The parameters in the genetic algorithm are set as: 
population size N=80, maximum generation number G=100, 
and ratio scheme ② (0.2, 0.75, 0.05) for copy, crossover and 
mutation. Figure 4 shows the convergence process of a best 
global optimal solution among the experiments. It can be seen 
that although tending to approach the optimal solution as the 
generation number increases, results stay around a local 
optimal solution with little variation and cannot continue to 
approach the actual optimal solution. As for the algorithm, 
when a local optimal solution is close to the global optimal, 
the successive genetic operation can possibly cause the next 
generation to pass the neighborhood of the global optimal 
solution and not to converge. Despite the fact that the elitist 
strategy is adopted to stabilize the algorithm, it is difficult to 
guarantee that the results approaches the actual optimal 
solution gradually; instead they fluctuate around a local 
optimal solution with slow convergence, with a relatively 
unsatisfactory result.

 
  Fig. 3. Convergence process of a best global optimal solution 

for the experiments on the simulated annealing algorithm 
 Fig. 4. Same as Fig. 4 except for the genetic algorithm 

  
The parameters in the ant colony algorithm are set as: 

number of ants N=10, number of search round T=30, threshold 
parameter q0=0.9, global update coefficient ρ=0.8, local 
update coefficient ξ=0.2. Figure 5 shows the convergence 
process of a best global optimal solution among the 
experiments. It can be seen that the result shows a gradual 
convergence to the optimal solution in the form of steps. Ants 
seek nodes which have large pheromone values and small 
costs during a path selecting process. The relative ratio of the 
two factors depends on the pheromone update. Ants seek new 
paths only when the accumulated pheromone reaches a certain 
degree, which can be regarded as a convergence from the 
quantitative to qualitative change. This convergence form 
makes results stably approach the optimal solution without the 
appearance of fluctuations. Therefore, the algorithm has a 
quick convergence and a desirable result. 

Table 8 shows a comparison of the three algorithms. 
Similar to the experiments on storm matching, the simulated 
annealing algorithm and ant colony algorithm both give 
desirable results that global optimal solutions are close to the 
actual optimal solution with a short calculation time while the 
genetic algorithm gives a relatively poor result. The cooling 
process in the simulated annealing algorithm and the 
pheromone update in the ant colony algorithm both have clear 
convergence directions while genetic operations in the genetic 
algorithm are only optimizations to solutions already achieved. 

Both the simulated annealing algorithm and the ant colony 
algorithm transform the solution in only a few places to search 
solution space while the genetic algorithm transforms the 
solution considerably through the crossover operation. As a 
result, the capability of the genetic algorithm on the 
assignment problem is relatively poor given common coding 
and operators. Techniques have been developed to improve the 
genetic algorithm but the performance is still constrained (Han 
et al.[25]). 

 
Fig. 5. Convergence process of a best global optimal solution 

among the experiments on the ant colony algorithm 

For large-scale and complex assignment problems, there 
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is no need to seek optimal solutions which cannot possibly be 
determined. In this situation, one or several relatively 
desirable solutions costing short calculation time may satisfy 
the actual needs. The cost value and calculation time are both 
factors that should be considered and therefore modern 
optimization algorithms are suitable. The capability of parallel 
computation and massive search enables modern optimization 
algorithms to have diverse solutions and assemble optimal or 
near-optimal solutions. By contrast, it is difficult for the 
Hungarian method to attain this goal. 

Table 8. Comparative results of the three algorithms on Case 3 

 

M
ean total cost 

Total cost standard 
deviation 

M
nim

um
 cost 

C
orrect solution 

appearing tim
es 

A
verage calculation 

tim
e /s 

Simulated 
annealing 
algorithm 

28.26 1.291 26 5 0.877 

Genetic 
algorithm 36.54 3.587 32 0 1.944 
Ant colony 
algorithm 27.82 1.305 26 9 0.645 

7  CONCLUSIONS 

A new, simple and feasible two-dimensional storm 
identification method was proposed in this article. Compared 
with the previous methods, the new method searches directly 
in two dimensions for storm segments as a whole rather than 
combines storm components identified in radials. Based on the 
storm identification results in three successive time intervals 
at the lowest elevation PPI using data collected by a 
NEXTRAD at Nanjing, three modern optimization algorithms, 
i.e., the simulated annealing algorithm, genetic algorithm and 
ant colony algorithm, were tested for storm matching. 
Experiment results on the two cases showed that the simulated 
annealing algorithm and ant colony algorithm are reliable and 
corresponding parameters can be set intuitionally and 
efficiently, yielding desirable solutions whereas it is difficult 
for the genetic algorithm to achieve optimal solutions and have 
low convergence rates due to the characteristics of genetic 
operations. Meanwhile, a case of the assignment problem 
which could not be solved by the Hungarian method was used 
to further test the modern optimization algorithms and 
highlight their characteristics. This article aims to introduce 
new ideas and methods, and to offer some preliminary analysis 
and references. Future work is to needed to study the 
application of these algorithms in storm tracking and other 
relevant fields with more effective data, and new coding 
methods and effective operators are to be proposed to improve 
the algorithms according to the characteristics of relative 
problems. 

Appendix: Corresponding cost matrices of the three cases in 
this article 
 
B1 (Case 1)= 
[4.4735, 32.028, 380.35, 27.569, 52.11,84.664, 112.81, 
54.592, 159.79, 80.733, 67.103, 80.833, 108.88; 
34.919, 3.2289, 383.61, 46.684, 73.87, 110.41, 138.81, 
62.315, 186.8, 106.01, 90.062, 96.239, 133.18; 
376.81, 379.94, 8.6914, 396.83, 400.97, 400.81, 408.87, 

418.36, 391.7, 422.67, 432.1, 433.53, 434.16; 
27.444, 46.038, 399.21, 2.5642, 28.737, 67.83, 96.213, 
30.113, 147.88, 60.447, 45.533, 53.548, 87.678; 
77.748, 107.39, 402.61, 63.729, 50.313, 4.799, 32.815, 
80.518, 86.358, 21.992, 47.507, 59.695, 33.779; 
106.7, 133.23, 405.25, 91.326, 75.106, 25.526, 5.7685, 104.4, 
58.972, 43.341, 72.823, 78.801, 31.144; 
151.34, 179.31, 386.52, 141.3, 119.66, 77.49, 53.123, 150.59, 
6.0694, 98.685, 128, 126.9, 81.911; 
54.395, 58.909, 415.16, 30.352, 32.977, 82.133, 109.99, 
2.7326, 156.05, 69.887, 47.348, 38.299, 95.999; 
76.982, 102.62, 419.29, 56.82, 42.104, 24.925, 46.203, 
66.828, 102.54, 3.6756, 29.219, 39.806, 30.819; 
69.654, 91.545, 435.58, 47.877, 38.981, 57.282, 80.344, 
47.216, 136.71, 34.54, 5.0482, 18.733, 59.929; 
102.43, 128.89, 432.67, 83.073, 68.374, 33.41, 34.089, 
91.157, 88.498, 24.258, 50.593, 58.751, 5.0312]; 
 
B2 (Case 2)= 
[4.3194, 32.888, 376.39, 30.608, 84.255, 114.52, 162.35, 
106.43, 110; 
35.445, 1.9358, 380.49, 49.885, 110.95, 141.22, 190.32, 
130.67, 138.35; 
373.42, 379.56, 5.5868, 394.01, 398.82, 406.07, 390.97, 
420.65, 434.21; 
27.822, 45.08, 396.07, 6.147, 69.079, 99.496, 152.09, 86.68, 
92.645; 
49.92, 70.629, 397.8, 21.696, 54.829, 83.012, 131.1, 65.562, 
77.901; 
79.411, 107.19, 398.11, 63.412, 3.4745, 33.646, 87.83, 
29.145, 37.993; 
107.23, 136.5, 405.37, 92.819, 26.812, 5.2737, 62.373, 
26.897, 29.934; 
56.843, 60.86, 415.95, 30.913, 85.288, 112.24, 161.81, 
90.954, 101.47; 
152.94, 182.35, 386.81, 139.57, 78.152, 51.532, 6.4062, 
75.452, 81.494; 
101.46, 126.13, 418.53, 77.453, 26.509, 29.558, 83.744, 
3.5635, 16.101; 
80.372, 94.097, 430.2, 49.653, 64.213, 86.041, 137.2, 60.652, 
69.117; 
105.03, 132.48, 431.14, 86.481, 35.245, 35.221, 89.663, 
12.475, 5.3751]; 
 
B3 (Case 3)= 
[4 2 6 2 9 9 8 5 6 8 6 9 7 1 9 9 9 5 2 8 4 2;5 9 6 3 8 9 6 4 6 6 6 
6 1 2 2 9 6 4 1 5 3 2; 
1 6 2 8 4 3 1 2 9 2 7 4 6 9 3 6 9 4 8 3 4 9;6 4 9 5 4 4 4 1 2 1 3 
3 5 6 5 5 1 8 4 2 8 6; 
7 7 2 6 1 3 1 4 8 7 2 3 1 5 9 8 9 5 1 7 3 6;9 6 2 8 5 4 8 4 8 1 7 
5 4 2 1 9 9 4 8 4 5 2; 
3 1 9 8 7 3 9 5 3 6 7 1 2 5 7 1 9 4 2 4 5 3;2 2 5 8 9 8 5 4 7 8 9 
6 7 9 1 9 7 6 1 5 4 1; 
5 3 5 2 9 4 8 9 8 4 3 4 4 1 8 5 1 4 1 4 2 5;8 8 2 6 1 2 3 2 9 8 3 
3 9 4 7 7 1 6 7 7 3 5; 
4 1 6 2 8 1 7 5 7 6 3 3 5 1 7 1 7 6 4 4 2 6;5 4 6 4 1 7 3 9 1 8 2 
9 9 5 9 4 5 2 3 9 1 5; 
8 7 9 7 9 5 5 1 5 9 2 4 1 9 6 6 9 3 3 9 2 2;2 9 7 7 8 3 2 3 3 5 8 
9 9 5 6 8 9 2 8 4 7 8; 
7 2 2 3 5 4 6 6 2 1 7 6 8 8 2 2 2 8 9 3 8 7;8 5 2 5 6 4 2 1 1 2 2 
3 4 6 3 6 4 8 6 2 7 7; 
7 5 4 5 1 7 4 2 1 9 2 7 1 6 6 3 7 9 2 8 1 4;7 2 2 5 6 6 7 9 6 4 5 
6 4 3 7 5 3 4 2 6 2 7; 
4 4 6 2 6 2 1 9 8 4 7 8 8 4 9 5 5 3 4 2 4 6;6 4 6 1 3 7 8 5 2 4 7 
6 6 9 3 1 8 8 6 1 5 1; 
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5 9 9 9 2 1 2 6 2 8 4 1 2 2 2 2 3 9 1 8 9 8;4 2 8 9 7 9 7 5 8 7 1 
1 7 9 7 1 4 7 5 6 1 5]. 
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