
Vol.15 No.1                      JOURNAL OF TROPICAL METEOROLOGY                         June 2009 
 

Article ID: 1006-8775(2009) 01-0013-07 

THE EFFECTIVENESS OF GENETIC ALGORITHM IN CAPTURING 
CONDITIONAL NONLINEAR OPTIMAL PERTURBATION WITH 

PARAMETERIZATION “ON-OFF” SWITCHES INCLUDED BY A MODEL   

FANG Chang-luan (方昌銮)
1, 2

, ZHENG Qin (郑  琴)
1
 

(1. Institute of Science, PLA University of Science and Technology, Nanjing 211101; 2. Oceanic 
Hydrometeorological Center of the South Sea Navy Fleet, Zhanjiang 524001) 

Abstract: In the typhoon adaptive observation based on conditional nonlinear optimal perturbation 
(CNOP), the ‘on-off’ switch caused by moist physical parameterization in prediction models prevents the 
conventional adjoint method from providing correct gradient during the optimization process. To address 
this problem, the capture of CNOP, when the “on-off” switches are included in models, is treated as 
non-smooth optimization in this study, and the genetic algorithm (GA) is introduced. After detailed 
algorithm procedures are formulated using an idealized model with parameterization “on-off” switches in 
the forcing term, the impacts of “on-off” switches on the capture of CNOP are analyzed, and three 
numerical experiments are conducted to check the effectiveness of GA in capturing CNOP and to analyze 
the impacts of different initial populations on the optimization result. The result shows that GA is 
competent for the capture of CNOP in the context of the idealized model with parameterization ‘on-off’ 
switches in this study. Finally, the advantages and disadvantages of GA in capturing CNOP are analyzed in 
detail. 
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1  INTRODUCTION  

Among the scientific investigations on the atmosphere 
and ocean, many physical phenomena can be viewed as 
perturbations added to the basic flow and the evolution 
of physical phenomena come down to the investigation 
of perturbations’ evolution in mathematics. So the 
determination of the fastest growing initial perturbations is 
of central importance and has been an attractive issue 
since the work of Lorenz [1]. The linear approach for 
capturing the fastest growing initial perturbation is 
widely adopted with the assumption that the initial 
perturbation is sufficiently small such that its evolution 
can be governed approximately by the tangent linear 
model (TLM) of a nonlinear model. Then the 
calculation of linear fastest growing perturbation is 
reduced to the evaluation of the linear singular vector 
(LSV) and linear singular value (LSVA). However, the 

motions of the atmosphere and ocean are governed by 
complicated nonlinear systems. In order to study the 
nonlinear mechanism of the amplification of initial 
perturbations, Mu [2, 3] proposed the concept of 
conditional nonlinear optimal perturbation (CNOP). 
CNOP is the initial perturbation whose nonlinear 
evolution attains the maximal (or “optimal”) value of 
the cost function constructed according to the physical 
problems of interest at a specified time with physical 
constraint conditions. 

Presently CNOP has already been used in ENSO 
predictability [4], ensemble prediction [5], spring 
predictability barrier for El Niño events [6, 7], nonlinear 
characteristics of El Niño events [8], El Niño and La 
Niña amplitude asymmetry [9], stability, sensitivity and 
predictability [10] and so on, but most of the models 
governing the nonlinear evolution of initial perturbation 
are simplified ones with continuous physical variables. 
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Recently, CNOP is used in typhoon adaptive 
observation with the MM5 model [11]. When moist 
physical parameterizations are included, however, the 
cost function, which describes the conditional nonlinear 
growth of initial perturbation, is filled with 
discontinuities induced by the moist physical 
parameterization. At times some terms of governing 
equation(s) are not differential (even discontinuous) 
with respect to time (model variables) at some critical 
points, and this phenomenon is generally called the 
“on-off” switch. Moist physical parameterizations in 
atmospheric numerical models may trigger “on-off” 
switches [12 – 17]. 

In the aforementioned CNOP related literature [2 - 

11], some information gradient-based optimization 
algorithms are adopted for the optimization process, 
and the conventional adjoint method is used to provide 
the gradient of cost function for the optimization 
process. However, a lot of investigations have revealed 
that the effectiveness of the conventional adjoint 
method is confronted with great challenges when there 
are discontinuous switches in the governing equation 
(Xu [12,13]; Zou [14]; Mu [15,16]; Zheng [17]). So, when full 
physical parameterizations are adopted in typhoon 
adaptive observation and typhoon- and 
storm-precipitation-related sensitivity analyses, the 
conventional adjoint method fails to provide the correct 
gradient. 

If we continue to use the idea of non-smooth 
optimization (Zhu[18]) to consider the problem of moist 
physical parameterization with CNOP in governing 
equation(s), the genetic algorithm (GA) can be used to 
replace gradient or sub-gradient based methods, and 
then the impact of “on-off” switches on the 
optimization process may be decreased or eliminated. 
GA is based on the simulation of human being’s and 
biological evolution to search an optimal, general 
solution, it starts with a set of (rather than one) 
solutions and a number of simple genetic operators are 
used during the iteration processes to improve current 
solutions, which are evaluated only by the value of 
their cost function. The whole iteration processes are 
carried through without any gradient (or sub-gradient) 
related information. 

There are at least two potential advantages to use 
GA to capture CNOP with moist physical 
parameterizations in typhoon adaptive observation, 
typhoon- and storm-precipitation-related sensitivity 
analyses. Firstly, no adjoint model is required in GA 
and the model used in the optimization process can be 
exactly consistent with the prediction model, and  
thereby, the results of the above adaptive observations 
and sensitivity analyses can reflect the exact 
characteristics of the prediction model. Secondly, 
parallel procedures can be easily designed in GA for its 

inherent parallel computation characteristics, which 
thereby can take full advantage of the rapidly 
developing computational parallel technology to 
improve the actual effect of related investigation. 

This study aims at checking the effectiveness of 
GA in capturing CNOP with the “on-off” switches in 
the governing equation by using an idealized model of 
a partial differential equation with the parameterization 
“on-off” switch in the forcing term to reflect the impact 
of discontinuity, which is induced by the switch, on the 
performance of the conventional adjoint method in the 
process of capturing CNOP. The descriptions of the 
model and CNOP are presented in Section 2, and the 
procedure of GA in capturing CNOP is formulated in 
detail in Section 3. Section 4 gives the analyses of the 
failure of the conventional adjoint method in capturing 
CNOP with the “on-off” switch and numerical 
experiments are conducted to check the effectiveness of 
GA in capturing CNOP and the impacts of different 
initial population on the optimization results, and 
finally the advantages and disadvantages of GA in 
capturing CNOP are analyzed in Section 5. 

2  DESCRIPTIONS OF MODEL AND CNOP 

2.1  Model 

As shown in Mu [16], the authors proposed the 
following partial differential governing equation with a 
parameterized “on-off” switch in the source term, i.e., 
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This equation describes the evolution of specific 
humidity q  along one grid line l , where ( ), 0q t l ≥  
denotes the specific humidity, cq is the saturation 
specific humidity (namely threshold); t  is the time; l  
stands for either horizontal variable x  (or y ) or 
vertical variable z . For more detailed description, 
refer to Mu [16]. In order to reflect the switch problem 
in the real model where the “on-off” switch can be 
triggered repeatedly, the constant F  is converted to a 
function ( )F t , and ( )0 cq l q<  and ( )0 0F g− >  are 
set to make sure that the “on-off” switch can be 
triggered repeatedly in some space gridpoints within 
[0, ]T . So the governing equation is rewritten as 

( ) ( )
( ) ( )

( )
0 0

0

, 0 ,0

, , 0
,

| 0, 0 ,

c

t

l

q qa F t gH q q l L t T
t l

q t l q l l L
q t l

t T
l

=

=

∂ ∂
+ = − − ≤ ≤ ≤ ≤ ∂ ∂ = ≤ ≤

∂
= ≤ ≤

∂

      

      

(2) 

where ( )F t a bt= − , 8a = , 11b = , 7g = , 0.58cq = , 
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( ) ( )0 0.28 0.15sin / 2q l lπ= − , and Eq.(2) is discretized 
as follows: 

( )0 0 , 0,1, ,i
iq q l i M= =            (3) 

( )0 0 0
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where t∆  denotes the time step, kt k t= ∆ , l∆  the 
space step, il i l= ∆ , k  the time level, i  the space 
grid point, ( )1 / 1M L l+ = ∆ +  the total number of 
space discrete points, and /N T t= ∆  the total time 
levels in integration. Besides, some values are 
prescribed as 20M = , 100N = , 0.01t∆ = , and 

0.05l∆ = . 

2.2 CNOP 
Let Tq  and T TNq q+   be the solution to Eq.(2) 

with the initial value being 0q  and 0 0q q+   
respectively, that is, if the governing equation is 
defined as M , then ( )0Tq M q= , 

( )0 0T TNq q M q q+ = +  . In this paper, the 2L norm is 
employed, that is, 

2 2

0

L
q q dl= ∫ ,              (6) 

with the constraint 0q δ≤ , in which the initial 
perturbation *

0q  is called the conditional nonlinear 
optimal perturbation, if and only if 

( )
0

*
0 0arg max

q
q J q

δ≤
=


               (7) 

( ) ( ) ( )0 0 0 0 TNJ q M q q M q q= + − =   ,        (8)
   
where TNq  presents the nonlinear evolution of the 
initial perturbation 0q . 

Conventional optimization methods are based on 
gradient related information, such as BFGS, SPG2 and 
SQP [2-5], and the gradient is provided by the 
conventional adjoint model. 

3  GENETIC ALGORITHM 

The iteration procedure of using genetic algorithm 
as optimization algorithm to locate CNOP can be 
illustrated as follows.  

Step 0. Population initialization. Set generation 
0i = , and initialize population ( )0P , which is a set of 

solution guess, 
( ) ( ) ( ) ( )0 0 0

1 20 , , , nP Q Q Q =             (9) 
( ) ( ) ( )1 20
0, 0, 0,, , , m

k k k kQ q q q =     ,          (10) 

where ( )0
kQ  denotes the k th individual of initial 

generation, and ( )
0

jq  stands for the j th element of 
individual ( )0

kQ , which is the discrete value of initial 
perturbation 0q , n is the size of population, and m the 
number of discrete point of 0q in [0, ]L , that is, 

( ) ( )0 0
j

jq q l=  , 1,2, ,j m=  , ( )1jl j l= − ∆ . The methods 
of generating the initial population are of several forms, 
such as stochastic generation, prior information, and 
prior information combined with stochastic generation, 
among which the principle of initialization is to 
increase the population diversity as greatly as possible. 

Step 1. Evaluate the cost function ( )( )i
kJ Q , where 

1,k n=  , according to Eq.(7) by integrating model 
Eqs.(3)-(5) with initial condition ( )

0
i
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the best individual ( )

*
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is, 
( ) ( )( )* 1

arg maxi i
kk n

Q J Q
≤ ≤

=  .         (11) 

Step 2. Check whether ( )
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iQ  satisfies the stop 
criterion of 
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or mi i≥ , where ν  and ε  are the given values, and 

mi  is the specified maximum generation. If it is 

satisfied, output ( )
*

iQ  and ( )*
0 *

iq Q= , and then stop the 
procedure; if not, go to Step 3. 

Step 3. Select genetic operators. The operators are 
selected according to the selection probability 

( )( )i
s kp Q , which determines whether the individual for 

number k  is selected for the following operators. 
Here ( )( )i

s kp Q  is defined as follows: 
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where d stands for the number of individuals whose 
cost function is greater than the averaged one in the 
current generation, and κ  is a coefficient to balance 
proportion selection and ranking selection. 

Step 4. Determine crossover operators. Suppose 
that the two individuals selected to mate are 

( )
1

i
kQ and ( )

2

i
kQ , where 

( ) ( ) ( ) ( )
1 1 1 1

1 2
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2 2 2 2
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and 1 21 ,k k n≤ ≤ . For j, two elements ( )
1,ˆ j

o kq  and ( )
2,ˆ j

o kq  
are stochastically generated within 
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Step 5. Determine mutation operators. Suppose 
that the individual selected to mutate is ( )ˆ i

kQ , then the 
jth element can be modified in the following two ways: 

( ) ( ) ( ) ( )( )0, 0, 0 0,,j j j j
k k kq q i q q= + ∆ −    ,       (14) 

and 
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where ( )
0

jq is the upper boundary of ( )
0,
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and 1 j m≤ ≤ , while ( )
0

jq is the lower one, 

( ), 1
btt y yr

T
 ∆ = − 
 

,           (16) 

where r is a stochastic number in [ ]0,1 , and b a 
parameter used to determine the degree of uncertainty, 
and then we obtain ( ) ( )1 ˆi i

k kQ Q+ = . 
Step 6.  Execute elitist reserving strategies. Copy 

the best w individuals in ith generation directly to 
replace the last bad w  individuals, which are ranked 
by their cost functions in 1i + th generation. The elitist 
reserving strategy is the basis of genetic algorithm’s 
convergence. Again, go to Step 1. 

 

 
(a) 

 
 (b) 

 
 (c) 

 
   (d) 

Fig.1 Behavior of numerical solution q and cost 
function ( )0J q , parameters in the governing 
equation are configured as 
follows: 8, 11, 0.58ca b q= = = . (a) Numerical 
solution where 7g = , (b) cost function with no 
‘on-off’ switches, where 0g = , and the 5th and 
7th gridpoints are selected, (c) cost function with 
zigzag oscillation, where 7g = , and the 5th and 
17th grid points are selected, and (d) same as (c), 
but for the 5th and 7th gridpoints. 

4  NUMERICAL RESULTS AND ANALYSES 

4.1 Reasons for failure of conventional adjoint 
method  

In order to reveal the impact of “on-off” switches 
on numerical solutions and cost functions, and for the 
sake of intuitively displaying the change of ( )0J q  
according to 0q , the 1M −  dimensional components 
of 0q  are fixed to 0 while the other two components 
are varied. Then ( )0J q  is varied in the two 
dimensional space so that the variation of ( )0J q  with 
respect to 0q  can be easily observed in three 
dimensional space. For the reason that the nonlinear 
interactions between different gridpoints are greatly 
influenced by their distances, two schemes (namely S1 
and S2) are adopted to select the two components left, 
i.e., in S1, the 5th and 17th gridpoints are selected, while 
in S2, the 5th and 7th gridpoints are selected. 

The behavior of numerical solution q is illustrated 
in Fig.1a, which shows that the zigzag oscillation is 
obvious and that the evolutional solution is 
discontinuous. If there is no “on-off” switch in the 
governing equation, the cost function is continuous 
(Fig.1b). If there is, however, the behavior of ( )0J q  is 
undesirably poor (Fig.1c-d), and the degrees of 
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poorness are very different between Fig.1c and Fig.1d. 
The closer the distance between two gridpoints, the 
poorer the behavior of ( )0J q  is. 

The discontinuity of ( )0J q  results in the 
nonexistence of its gradient ( )

0 0q J q∇   , and therefore 
the adjoint model could not provide correct gradient for 
the optimization process. Hence it is impossible to 
update the current solution, which prevents the iteration 
process from converging to the optimal solution, 
eventually resulting in the failure of capturing CNOP. 
The related problems have been investigated in detail 
in the literature on variational data assimilation with 
parameterization “on-off” switches in governing 
equations (e.g., Xu [12,13], Zou [14], Mu [15,16], and Zheng 
[17]). So this paper aims at seeking a new optimization 
method and checking the effectiveness of GA in 
capturing CNOP with “on-off” switches. 

4.2 GA used to capture CNOP 
In order to check whether GA can capture CNOP, 

two schemes (S1 and S2) described in Section 4.1 are 
used to check the performance of GA in capturing 
CNOP with different degrees of poor behavior of ( )0J q . 
In Exp.1, the 5th and 17th gridpoints are selected, and in 
Exp.2, the 5th and 7th gridpoints are selected. In this 
study the penalty function is used to deal with the 
constraint 0q δ≤ , i.e., 

( ) ( ) ( )( )

( )

0 0 0 0
ˆ ,

1, 0
               ,

0, 0

J q J q P q q

x
P x

x

µ δ δ= − − −

>
=  ≤

   

(17) 

where µ  is an amplified coefficient, and ( )0Ĵ q  is 

used in the calculation of cost function in GA. 

4.2.1 Exp.1 
In this experiment, ( )

0
0iq = , where 

0, ,3,5, ,15,i =    17, , M , and the initial condition 
of model (2) is 

( ) ( )
0 0ˆ , 0, ,3,5, ,15,17, ,i iq q i M= =    , ( ) ( ) ( )

0 0 0ˆ i i iq q q= +  , 

and 4,16i =  , where ( ) ( )0 0
i

iq q l= , 

( ) ( )0 0.28 0.15sin / 2iq l i lπ= − ∆ , 0, ,i M=   , and 
0.02δ = . 
When the 5th and 17th grid points are selected, the 

conditional nonlinear optimal perturbation *
0q  is 

shown in Fig.2a, and the optimization trace of GA is 
illustrated in Fig.2b. In order to amplify the 
performance of GA in capturing CNOP, the initial 
population is arbitrarily configured far away from 
CNOP. It is shown in Fig.2b that during the 
optimization process, the population evolves, the best 

individual ( )
*

iQ  of the current generation gradually 
tends to approach the CNOP, and after approximately 
forty generations ( )

*
iQ  converges to the CNOP. 

Meanwhile, the iteration solution of the conventional 
adjoint method stagnates within a domain not far away 
from the initial population. This shows the better 
performance of GA in capturing CNOP when ‘on-off’ 
switches are applied. 

 

 
(a) 

 
(b) 

Fig.2  Conditional nonlinear optimal perturbation (CNOP) 
and the optimization trace of genetic algorithm 
(GA), where the shaded contour represents 

( )10 0log J q . To display clearly, the values less than 

10
-4.4

 are replaced by the white color, the red line 
denotes the optimization trace of GA, 0.02δ = , 
x-axis and y-axis are amplified by 10

3 
times, and 

both 5th and 17th grid points are selected. (a) 
( )10 0log J q and CNOP;  (b) ( )10 0log J q  and the 

trace of GA. 

4.2.2 Exp.2 
In this experiment, ( )

0
0, 0, ,3,5,7, ,iq i M= =   , 

and the initial condition of model equations (3~5) is 
( ) ( )
0 0ˆ , 0, ,3,5,7, ,i iq q i M= =   , ( ) ( ) ( )

0 0 0ˆ , 4,6i i iq q q i= + = . 
Fig.3a-3b illustrate that although the behavior of 

cost function in Exp.2 is much poorer than that in 
Exp.1, GA can still capture CNOP, showing good 
performance of GA when the gradient of cost function 
does not exist. 
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(a) 

 
(b) 

Fig.3  Same as Fig.2, but for both 5th and 7th gridpoints. 

4.2.3 Exp.3 
The dependence of GA’s performance on the initial 

population is examined in this numerical experiment. 
GA starts from a set of initial guess values (namely 
initial population), iterates according to the principle of 
selecting the superior and eliminating the inferior, and 
converges to the global optimal solution with high 
probability. The principle of population’s initialization 
is to increase the population’s diversity as much as 
possible. To solving the CNOP, the initial population is 
generated stochastically, and because of the stochastic 
numbers used, there are significant differences between 
every two runs, which are compared in this section. 
From the results (Fig.4), it can be seen that the best 
individual in Fig.4a is quite different from that in 
Fig.4b, whereas both can converge to CNOP. However, 
the iteration numbers vary from Fig.4a to Fig.4b; the 
closer the initial best individual to CNOP, the fewer 
steps of iteration are needed. Although different initial 
populations used to solve CNOP can converge to 
CNOP, great difference exists in computational cost, 
and therefore investigating reasonable methods of 
generating initial population is one of the approaches to 
improve the convergence speed of GA. 

5  CONCLUSIONS AND DISCUSSIONS 

When moist physical process parameterizations are 
included in the governing equation, “on-off” switches 
will be present, and hence the cost function constructed 
according to physical problems of interest is 
discontinuous and the gradient of cost function does not 
exist, preventing the conventional adjoint method from 
providing correct gradient for the optimization process. 
However, in this case, the optimization of CNOP 

search can be treated as a nonsmooth process. This 
study intends to apply genetic algorithm (GA) to 
capture CNOP with “on-off” switches in the governing 
equation, and the effectiveness by this method is 
examined with two numerical experiments. The result 
shows that GA is capable of capturing the CNOP in the 
context of the idealized model used in this study. 

 

 
(a) 

 
(b) 

Fig.4  Same as Fig.3, but for the trace of current best 
solution during the iteration process of solving 
CNOP with GA. 

 
One of important potential advantages of GA used 

in capturing CNOP is that it does not require any 
complicated adjoint model, and therefore complicated 
physical process can be included in the prediction 
model if it is allowed by computational resources. The 
operational prediction model, which contains various 
physical processes, can be directly adopted in the 
capture of CNOP, which enables the sensitive area and 
physical variables detected in typhoon adaptive 
observation to correctly reflect the sensitivity of the 
model. 

At the same time, it should be kept in mind that the 
computational time consumed by GA is much longer 
than that of the conventional adjoint method, which is 
also the difference between the stochastic searching 
algorithm and deterministic searching algorithm. 
Genetic algorithm, which starts from a set of solution, 
needs much more runs of model integration as  
compared with the conventional adjoint method, 
resulting in much more consumed time of computation 
when single CPU is used. However, it is encouraging 
that parallel computation can be easily carried out in 
genetic algorithm, for the operators of different 
individuals in one generation are relatively independent. 
In particular, the model integrations of different 
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individuals, which dominate the computational time, 
are completely independent among individuals and can 
thereby be conducted with ease in different CPUs. 
Thereby, all these suggest that we take full advantage 
of rapidly developing computational parallel 
technology. 

However, while GA has the above advantages 
used in capturing CNOP, it should be noted that the 
realization of GA comes with some skills, such as the 
setting of various parameters and the selection and 
design of genetic operators. It seems that there is 
generally not a single set of genetic operators which 
universally suit for every optimization problem. It is a 
feasible approach adopted by most researchers to 
improve GA’s performance by designing and 
improving genetic operators based on professional 
knowledge of specific problems. However, with an 
operational prediction model, awesomely complicated 
as it is, it is much more difficult to improve the 
performance of GA based on the knowledge of real 
models than that of idealized models. Meanwhile, this 
study just adopts a very simple ideal model with 
“on-off” switches to check the effectiveness of GA in 
solving CNOP with physical parameterizations in the 
governing equation. For the convenience of comparison 
with optimal solution, only two space gridpoints are 
used, and the dimension of calculation is very limited in 
number. However, if a real prediction model is used 
with much more calculation dimensions and 
complicated “on-off” processes, can GA still perform 
as well, or are there any intelligent optimization 
algorithms with much better performance and much 
lower computational cost? These problems can be dealt 
with only after a lot of investigations on performance 
comparison among different optimization algorithms as 
well as convergence precision and speed. 
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