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Abstract: On the basis of a comprehensive literature review and data analysis of global influenza 
surveillance, a transmission theory based numerical model is developed to understand the causative factors 
of influenza seasonality and the biodynamical mechanisms of seasonal flu. The model is applied to 
simulate the seasonality and weekly activity of influenza in different areas across all continents and climate 
zones around the world. Model solution and the good matches between model output and actual influenza 
indexes affirm that influenza activity is highly auto-correlative and relies on determinants of a broad 
spectrum. Internal dynamic resonance; variations of meteorological elements (solar radiation, precipitation 
and dewpoint); socio-behavioral influences and herd immunity to circulating strains prove to be the critical 
explanatory factors of the seasonality and weekly activity of influenza. In all climate regions, influenza 
activity is proportional to the exponential of the number of days with precipitation and to the negative 
exponential of quarter power of sunny hours. Influenza activity is a negative exponential function of 
dewpoint in temperate and arctic regions and an exponential function of the absolute deviation of dewpoint 
from its annual mean in the tropics. Epidemics of seasonal influenza could be deemed as the consequence 
of the dynamic resonance and interactions of determinants. Early interventions (such as opportune 
vaccination, prompt social distancing, and maintaining incidence well below a baseline) are key to the 
control and prevention of seasonal influenza. Moderate amount of sunlight exposure or Vitamin D 
supplementation during rainy and short-day photoperiod seasons, more outdoor activities, and appropriate 
indoor dewpoint deserve great attention in influenza prevention. To a considerable degree, the study 
reveals the mechanism of influenza seasonality, demonstrating a potential for influenza activity projection. 
The concept and algorithm can be explored for further applications. 
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1  INTRODUCTION  

Epidemic influenza kills approximately 250,000 
– 500,000 people around the world each year [1] 
with millions during pandemic years when a genetic 
reassortment of influenza viruses results in novel 
strains, disrupting global economic, social and 
public health systems. 

In recent years, huge amount of budget has been 
put aside for influenza research, partially due to the 

scare of a worldwide pandemic and partially due to the 
cost of experiments and vaccination development. 
Substantial advances have been made, but the majority 
of studies merely focus on various DNA and RNA 
virus species leaving many unknowns about the roles of 
meteorological, environmental and behavioral elements. 
To a considerable extent, the mechanism, determinants 
and dynamics of the seasonality and weekly variations 
of influenza remain a mystery. This has greatly 
affected the effectiveness of interventions against the 
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disease. On the other hand, influenza modeling, as a 
relatively thrift means of study, is playing an important 
role in the quantification and projection of influenza 
activity and the understanding of these unknowns (e.g. 
the associations between seasonal influenza and 
temperature, humidity, and precipitation; the roles of 
vaccination and social distancing). Because of this, 
some numerical models of influenza transmission have 
been developed in recent years. For example, E. Cahill 
et al.[2] presented a space-time influenza model with 
demographic, mobility and vaccine parameters, which 
describes the annual scenarios for the United States 
quite well. Some models were improved after exploring 
the importance of social network structure [3-9]. 
However, blanks still remain: some models are 
pandemic focused and therefore may not be fully 
applicable to seasonal and weekly activity of influenza; 
others are location specific or have tried to induce 
seasonality as an endogenous property of within-system 
dynamics, without altering either external seasonal 
forces or internal strain mutations or multi-strain cross 
protection, based solely on theories of stochastic 
processes, the influence of random noise in the system, 
and cascading local effects [9]. Some models that take 
account of only one or two variables prove limited. 
Obviously, models stemming from a more generalized 
algorithm and transmission pattern are necessary. Such 
models should be able to incorporate a variety of 
biological, meteorological, environmental, social and 
behavioral factors, have clear dynamic properties and 
clinical significance to explain the seasonality and 
weekly variations of influenza across different climatic 
zones, and demonstrate potentials for epidemic 
projection and other applications of medical and social 
values. This study is an exploration towards that 
direction. 

2  THE THEORY AND MODEL SCHEME 

Traditionally, influenza epidemiology uses a basic 
reproduction or transmissibility rate R0 to estimate the 
average number of secondary cases infected by each 
primary case. However, such a rate has been found 
highly variable. For example, the R0 for the 1918 
Pandemic was estimated to be around 1.8 only; 
whereas a maximum bound for R0 was obtained by 
analyzing the case data from an outbreak of the 1978 
H1N1 flu in a boys boarding school in England, 
yielding an upper bound of R0 < 21 [10]. The R0 may be 
adjusted to an “actual reproduction rate” for a 
community based on experience and experiments, but 
even so the transmissibility is still highly situation 
specific and greatly affected by a number of factors 
such as the duration of transmission of infected patients, 
the infectivity of the virus, and the number of 

susceptible people in the population that the infected 
hosts contact, as well as many other environmental and 
socio-behavioral parameters. Since factors are variable, 
it would be problematic to use a fixed reproduction rate 
for incidence projection. Besides secondary cases, the 
total number of influenza patients in a community is 
also affected by other elements such as patients’ 
mobility, transmission via those people who carry virus 
without symptoms, and the number of individuals 
infected via “non person-to-person contact”. 

Such being the case, this study does not repeat 
routine methods, instead, the reproduction rate is set to 
be a function of determinants that vary with time. The 
quantitative relationship below lays a foundation for 
the modeling in this study: 

For a given period of time (∆t), change in the total 
number of influenza patients in a community (∆P) = 
number of new cases due to “person-to-person” 
transmission + number of new cases due to “non 
person-to-person” infection  + number of patients 
entered the community – number of patients recovered 
– number of patients died – number of patients left the 
community. Mathematically, this relationship can be 
expressed as: 

ttNtOtI
ttPtDtCtRtP

∆⋅+−
+∆⋅⋅−−⋅=∆

)]()()([
)()]()()()([λ  (1) 

where, P(t) denotes the total number of existing 
patients at time t; R(t) - the ratio of the number of new 
cases infected by existing patients to the number of 
existing patients per unit of time at time t; C(t) – the 
ratio of the number of recovered cases from existing 
patients to the number of existing patients per unit time 
at time t; D(t) - the ratio of the number of fatal cases 
among existing patients to the number of existing 
patients per unit time at time t; I(t) – the number of 
patients entering the community per unit time at time t; 
O(t) - the number of patients leaving the community 
per unit time at time t; N(t) – the number of new cases 
from “non person-to-person” infection per unit time at 
time t; and λ(t) – a revision coefficient for the 
transmission via those people who carry virus without 
symptoms. When the increment of t (∆t) is small, the 
above equation becomes a differential equation: 

)()()( ttPt
dt
dP
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where, 
)()()()()( tDtCtRtt −−⋅= λα      (3) 
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The universal solution to Eq.(2) is: 
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Note that both α(t) and β(t) are function of time and 
determinants, which can span from virulence of strains, 
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herd immunity, temperature, ventilation, interpersonal 
contacts, social distancing, recovery time to hygiene 
practice. Because of this, Eq.(5) cannot be integrated 
unless we know the specific expressions of α(t) and 
β(t), which is unattainable under most circumstances. 
Nevertheless, an alternative strategy to overcome this 
obstacle is to assume α(t) and β(t) take their 
integration averages (constants) within a short period 
of time. The errors resulting from such an assumption 
is expressed as 'ε . Therefore, an approximate solution 
of Eq.(5) would be: 
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or, in a Taylor expansion form: 
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where P0, α0 and β0 denote their initial values (at time 
0) and the quantity under “—” represents integration 
average during the time period.  Eqs.(6) and (7) give 
the total number of influenza patients in a 
community/area after a time period of t. They are 
applied in the modeling and projection of influenza in 
the study. Since all variables affecting transmission 
(and thus incidence) can be incorporated into the 
governing equation and its approximate solution, the 
hypothesized theory and model is called GR Theory 
and GR Model respectively, denoting generalized 
reproduction. 

3  MODELING METHODS 

Prior to being used for influenza simulation and 
projection, Eq.(6) needs to be parameterized. This is 
achieved through four steps: 

Step 1. Assume that the net flux of patients is 
small during a unit time period in a community where 
public health services are affordably available and that 
the portion of new cases from “non person-to -person” 
infection is also small. This gave )(tβ ≈ 0 and 
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where P1 denotes the number of influenza patients in 
the community after a unit time period. ε* denotes total 
errors (positive or negative) resulting from the 
approximate solution and the above assumptions. 

Step 2. Assume that )(tα  is a linear combination 

of explanatory factors (determinants). That is, 

nn fafafaat .....)( 22110 +++=α        (9) 
where, a0 is a constant. a1, a2 and an are coefficients. 
a0, a1, a2 and an are all variables of geographic 
locations and populations. They could also vary over 
time but are statistically stable for a specific 
community and population. f1, f2 and fn are the mean 
values of any explanatory factors for influenza activity 
in the community during the time period. 

Step 3. Screen and choose the explanatory factors 
based on a comprehensive review of literature [11-25] and 
statistical correlation analyses. Each potential factor is 
checked for consistency in correlation with influenza 
indexes in the different countries/cities listed in Table 1. 
These countries/cities, as shown in Fig.1, are selected 
from America, Europe, Asia, Africa and Oceania and 
distributed across each climate region (arctic, 
temperate, and tropical) in both hemispheres. These 
factors are ensured to be etiologically plausible, 
statistically significant, logically and temporally 
reasonable; and in accordance with biomedical and 
social science knowledge. 

 
Table 1 List of the countries/cities selected for the study. 

Country City o N(S) o E(W) 
Finland Oulu 64.9 oN 25.4 oE 

Kazakhstan Petropavlovsk 54.8 oN 69.1 oE 

USA Dutch Harbor 53.9 oN 166.5 oW 

UK Nottingham 53.0 oN 1.2 oW 

Canada Vancouver 49.2 oN 123.2 oW 

China Urumqi 43.8 oN 87.6 oW 

Japan Sapporo 43.1 oN 141.0 oW 

USA Boston 42.4 oN 71.0 oW 

Italy Rome 41.8 oN 12.6 oE 

Morocco Rabat 34.0 oN 6.8 oW 

USA Midland 32.0 oN 102.1 oE 

Egypt Cairo (South) 29.9 oN 31.4 oE 

China Hong Kong 22.2 oN 114.2 oE 

India Pune 18.5 oN 73.9 oE 

Senegal Dakar 14.7 oN 17.5 oW 

Thailand Krabi 8.0 oN 98.9 oE 

Colombia Bogota 4.7 oN 74.1 oW 

Singapore Singapore 1.4 oN 104.0 oE 

Brazil Belem 1.5 oS 48.5 oW 

Congo Kinshasa 4.4 oS 15.4 oE 

Indonesia Mataram 8.6 oS 116.1 oE 

Brazil Santa Maria 29.7 oS 53.7 oW 

South Africa Cape Town 34.0 oS 18.6 oE 

Australia Canberra 35.3 oS 149.2 oE 

New Zealand Christchurch 43.5 oS 172.6 oE 

Argentina El Calafate 50.3 oS 72.3 oE 
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Fig.1 Geographic distribution of the selected cities. 

 
Step 4. Having determined the input explanatory 

factors, a0 and coefficients a1, a2 and an for a specific 
community/area are obtained by nonlinear regression 
with historic influenza indexes (e.g. ILI, % of “+” 
isolates) in a community/area. Initial values for ε* and 
β0/α0 in Eq.(10) are assigned and refined iteratively to 
achieve least squares. 
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This gave a parameterized equation for influenza 
modeling and projection for the community/area: 

( ) εσ +×+≈ +++ )...(
01

22110 nn fafafaaePP  (11) 
where, a0, a1, a2…an, σ and ε are values determined by 
the nonlinear least squares. 

When a coefficient of correlation (R2) given by 
Eq.(11) is sufficiently small and the multiple regression 
is statistically significant at the 0.05 level or less, the 
influenza activity in the community/area is considered 
to have been simulated with the variables inputted and 
Eq.(11) could be applied to influenza projection for the 
community/area. 

Data of influenza activity is obtained from: 
1) World Health Organization (WHO) Flu Net 
2) Weekly influenza surveillance reports 
3) Data from published papers 
4) Personal communication with scientists 

Environmental data is acquired from: 
1) Climate databases from World Meteorological 

Organization (WMO) 
2) Regional Meteorology Organizations 
3) Online weather websites 
4) Regional Environmental Protection Agencies 

4  RESULTS 

4.1  Explanatory factors 

Literature review and correlation analysis identify 

four significant explanatory factors for influenza 
seasonality in the countries/areas in Table 1. 
1) Sunny hours - Sh 
2) Number of rainy days - nr 
3) Dewpoint - Td (°C) for arctic and temperate regions 
and the absolute deviation of dewpoint from annual 
means (|Td

’|) for tropical regions (23.5°N – 23.5°S) 
4) Socio-behavioral factors - λ, which takes a value 
between 0.85 and 0.99 for major social events such as 
school breaks and long public holidays 

Significant explanatory factors for weekly 
influenza activity are similar except that influenza may 
also relate to change in dewpoint (∆Td). 

Table 2 summaries the original regression 
coefficients and correlation coefficients (r) between the 
explanatory factors and the seasonal influenza indexes 
in those countries/areas where over 5 years of 
historical data are available. Indexes of influenza used 
and the length of data are also listed. 

Table 3 gives a perceptible example in the 
association between percentage of patient visits due to 
ILI and monthly averaged weather elements observed 
in a typical temperate area (British Columbia, Canada). 

 
 

Table 2 Original regression coefficients and correlation 
coefficients (r) between the explanatory factors 
and influenza indexes in representative cities. 

Country/City Index Sh Nr Td/|Td’| 

Oulu, Finland 
(64.9 oN 25.4 oE) 

No. of case 
(9 years) 

-1.87 
(P =0.06) 
r = -0.55 

1.75 
(P=0.18) 
r = 0.41 

-1.30 (Td) 
(P<0.001) 
r = -0.89 

Nottingham, UK 
(53.0 oN 1.2 oW) 

ILI 
(8 years) 

-4.88 
(P<0.001) 
r = -0.87 

2.90 
(P=0.002) 
r = 0.79 

-2.03 (Td) 
(P=0.002) 
r = -0.78 

BC, Canada  
49.2oN 123.2 oW 

ILI 
(6 years) 

-0.12 
(P<0.001) 
r = -0.86 

0.06 
(P<0.001) 
r = 0.87 

-0.07 
(P<0.001) 
r = - 0.89 

Rome, Italy 
(41.8 oN 12.6oE) 

ILI 
(8 years) 

-46.17 
(P=0.02) 
r = -0.64 

28.33 
(P=0.11) 
r = 0.49 

-23.6 (Td) 
(P=0.005) 
r = -0.75 

HK, China 
(22.2 oN 114.2oE) 

ILI 
(12 years) 

-0.38 
(P=0.002) 
r = -0.79 

0.03 
(P=0.68) 
r = 0.13 

0.08 |Td
’| 

(P=0.38) 
r = 0.28 

Bogota, Colombia 
(4.7 oN 74.1oW) 

% of “+” 
isolates 
(years) 

-3.55 
(P<0.001) 
r = -0.89 

1.09 
(P<0.001) 
r = 0.93 

2.57 |Td
’| 

(P=0.47) 
r = 0.23 

Singapore 
(1.4 oN 104.0 oW) 

% of “+” 
isolates 
(8 years) 

1.66 
(P=0.199) 
r =  0.40 

-0.27 
(P=0.55) 
r = -0.19 

7.39 |Td
’| 

(P=0.02) 
r = 0.63 

Belem, Brazil 
(1.5 oS 48.5 oW) 

Res. Dis. 
Rate 

(11 years) 

-0.02 
(P=0.51) 
r = -0.21 

0.03 
(P=0.09) 
r = 0.51 

0.75 |Td
’| 

(P=0.06) 
r = 0.55 

Santa, Brazil 
(29.7 oS 53.7 oW) 

Res. Dis. 
Rate 

(11 years) 

-1.27 
(P=0.01) 
r = -0.71 

0.61 
(P=0.16) 
r = 0.43 

-0.67 (Td) 
(P<0.001) 
r = -0.92 

Canberra, AU 
(35.3 oS 149.2 oE) 

No. of case 
(13 years) 

-87.96 
(P=0.22) 
r = -0.38 

162.05 
(P=0.006) 
r = 0.74 

-57.3 (Td) 
(P=0.02) 
r = -.067 
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Table 3  Association between % of patient visits due to 
ILI and monthly averaged weather elements 
(BC, Canada). 

Month ILI (%) Sunny Hours/Day Rainy Days Dewpoint  
Jan 1.01 2.0 20 2.3 
Feb 0.95 3.4 17 2.4 
Mar 0.59 4.2 17 3.6 
Apr 0.27 6.5 14 5.0 
May 0.16 7.5 12 8.5 
Jun 0.13 7.7 11 11.4 
July 0.08 8.6 7 13.8 
Aug 0.04 8.4 8 14.0 
Sep 0.11 6.2 9 11.4 
Oct 0.27 3.6 16 7.9 
Nov 0.52 2.1 19 4.5 
Dec 0.88 1.4 22 2.4 

 
 
Table 4 shows the regression coefficients and 

correlation coefficients (r) recalculated with the GR 
Model. 

 
Table 4 Regression coefficients and correlation 

coefficients (r) recalculated with the GR 
Model. 

Country/City Index Sh
1/4 Nr Td/|Td

’| 

Oulu, Finland 
64.9 oN 25.4 oE 

log ratio of 
No. of case 

-1.07 
(P<0.001) 
r = -0.74 

0.17 
(P=0.001) 
r = 0.81 

-0.02 (Td) 
(P=0.27) 
r = -0.35 

Nottingham, UK 
53.0 oN 1.2 oW 

log ratio of 
ILI 

-3.99 
(P<0.001) 
r = -0.86 

0.29 
(P<0.001) 
r = 0.89 

-0.15 (Td)  
 (P=0.02) 
r = -0.64 

BC, Canada  
49.2oN 123.2 oW 

log ratio of 
ILI 

-2.1, r= -.98 
(P<0.001) 
R2 = 0.96 

0.09 
(P<0.001) 
r = 0.93 

-0.08 (Td) 
(P<0.001) 
r = -0.83 

Rome, Italy 
41.8 oN 12.6oE 

log ratio of 
ILI 

-6.23 
(P<0.001) 
r = -0.92 

0.29 
(P<0.001) 
r = 0.83 

-0.14 (Td) 
(P=0.005) 
r = -0.75 

HK, China 
22.2oN 114.2oE 

log ratio of 
ILI 

-1.47 
 (P=0.02) 
r = -0.64 

0.00 
 (P=0.89) 
r = -0.04 

0.05 |Td
’| 

(P=0.12) 
r = 0.47 

Bogota, Colombia 
4.7 oN 74.1oW 

log ratio of 
No. of 
isolates 

-10.11 
(P<0.001) 
r = -0.95 

0.20 
(P=0.001) 
r = 0.81 

0.28 |Td
’| 

 (P=0.71) 
r = 0.12 

Singapore 
1.4oN 104.0 oW 

log ratio of 
No. of 
isolates 

-2.50 
 (P=0.36) 
r = -0.29 

0.14 
(P=0.02) 
r = 0.66 

0.12 |Td
’| 

(P=0.83) 
r = 0.07 

Belem, Brazil 
1.5 oS 48.5 oW 

log ratio of 
Res. Dis. 

Rate 

-0.44 
(P=0.33) 
r = -0.31 

0.05 
(P=0.07) 
r = 0.54 

0.93 |Td
’| 

(P=0.10) 
r = 0.50 

Santa, Brazil 
29.7 oS 53.7 oW 

log ratio of 
Res. Dis. 

Rate 

-1.38 
(P<0.001) 
r = -0.87 

0.05 
(P=0.02) 
r = 0.66 

-0.04 (Td) 
(P<0.001) 
r = -0.89 

Canberra, AU 
35.3oS 149.2 oE 

log ratio of 
No. of case 

-10.32 
(P=0.003) 
r = -0.78 

0.55 
(P=0.007) 
r = 0.73 

-0.26 (Td) 
(P<0.001) 
r = -0.88 

 
It can be seen that: 

1) In general, seasonal influenza activity is positively 
correlated to monthly days with precipitation and 
negatively correlated to monthly sunny hours/day. 

2) In temperate and arctic regions, seasonal influenza 
activity is negatively correlated to dewpoint; while 

in tropical regions it is positively correlated to the 
absolute deviation of dewpoint from its annual 
mean. 

3) After applying the GR Model, these correlations 
remain and become more significant (smaller P 
values) and consistent. 

4) In GR Model, seasonal influenza activity is 
correlated to negative exponential of quarter (1/4) 
power of monthly sunny hours/day in all climate 
zones. 

5) Statistical significance of the associations between 
seasonal influenza activity and the explanatory 
factors increases in temperate and arctic regions. 

4.2  Modeling of influenza seasonality  

Simulations of influenza seasonality were 
performed for all countries/cities listed in Table 2. 

Table 5 lists the simulation results in terms of 
value of F, P value, and R2 obtained from variance 
analysis and the Pearson correlation coefficient (r) 
between the actual values of the indexes and model 
outputs. 

 
Table 5  Simulation results of the seasonality of influenza 

in different cities. 

Country/City F P Value R2 r 
Oulu, Finland 20.98 0.00054 94.0% 0.97 
Nottingham, UK 102.75 2.7 x 10-6 97.1% 0.99 
Rome, Italy 25.63 0.00028 94.6% 0.98 
HK, China 23.38 0.00038 95.5% 0.97 
Bogota, Colombia 21.92 0.00047 92.5% 0.97 
Singapore 15.73 0.00130 86.1% 0.93 
Belem, Brazil 12.59 0.00260 89.6% 0.97 
Santa Maria, Brazil 31.12 0.00015 98.1% 0.99 
Canberra, AU 10.03 0.00500 84.1% 0.92 

 
Two typical examples (Finland and Colombia) are 

given in Fig.2 and Fig.3, representing the situation in 
an arctic area and a tropical area respectively. Here 
seasonality is defined as the monthly mean of an 
influenza activity index (e.g. ILI or total number of flu 
patients) over years. 

Model Output v.s. Actual No.of Influenza Isolates
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Fig.2  Simulation results of influenza seasonality for Finland. 
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Model Output and Actual % of Flu Virus Isolates

(Colombia)
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Fig.3  Simulation results of influenza seasonality for 

Colombia. 
 

The corresponding modeling equations are: 
3)3( )31.201.082.007.022.2(

01

4/1

−⋅+= −+−+ λdhr TSNePP  (12) 

9.2)1(
)32.121.031.1001.074.12(

01

'4/1

−⋅+=
−+−− λdhr TSN

ePP   (13) 
It can be seen that when the four key explanatory 

factors are put into the GR model for seasonality 
modeling, 
1) All simulation results have a P value < 0.01 with 

smaller P values in temperate and arctic regions 
2) All simulation results have a coefficient of 

correlation (R2) > 0.84 
3) All simulation results have a correlation coefficient 

(r) > 0.92 

4.3  Modeling of weekly influenza activity 

Retrospective simulation and projection of weekly 
influenza activity were performed for Hong Kong, 
China and New England Region, USA with the Model 
and parameter Sh

1/4, Nr, Td (|Td
’|), and λ. 

Fig.4 shows the actual weekly consultation rates of 
ILI reported by sentinel General Practitioner clinics in 
Hong Kong in 2006 and the simulation from the GR 
Model. Fig.5 shows the actual influenza isolates (% 
Positive) in New England Region of the United States 
in the 2008-2009 season and the projection from the 
Model. They represent the weekly projection results in 
temperate and tropical regions individually. 

For comparison, Fig.6 gives the projection result 
from a simple linear multiple-regression with the same 
variables. The corresponding equations for the two 
projection models (GR Model and common multiple 
regression model) are: 

5)9( )77.303.005.055.040.4(
01

4/1

−⋅+= +−−+− λdhr TSNePP   (14) 
λ0.1169.111.11.13.131 4/1 +++−−= hrd SNTP   (15) 
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Fig.4  Simulation result of weekly consultation rate 

of ILI for Hong Kong. 
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Fig.5  Simulation results of weekly consultation rate 
of ILI for New England Region, USA. 
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Fig.6 Projection results from the simple linear 
multiple-regression with the same variables as in 
Fig.5. 

 
Table 6 summaries these projection results in terms 

of P value, R2 and the correlation coefficient r. 
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Table 6  Projection results of weekly influenza activity. 

Region Model P Value R2 r 

Hong Kong GR <0.001 90% 0.95 

New England GR 0.001 95% 0.98 

New England Multi Regression 0.003 64% 0.80 
 
 

Table 7  Weaker annual variations of weather elements 
lead to weaker seasonality of influenza 
activity. 

Annual Ratio 

Country 
Flu Index Sunny Hour Rainy Day 

Annual 

Variation (Td)  

Finland 419.5 > 100 1.7 24.3 

Italy 49 2.8 11.0 15.7 

Australia 20.4 1.8 1.6 11.9 

Colombia 3.7 1.7 2.3 1.5 

5  DISCUSSIONS AND SUMMARY 

For hundreds of years, physicians and scientists 
have owed people sound answers to such questions as 
why the flu has seasonality, what are the determinants 
for weekly variations of influenza activity in a 
community, and what causes the disease to spread so 
quickly during epidemics? With a new pandemic being 
imminent, it is high time we gain a deeper 
understanding of these in both virology and in 
epidemiology. To a certain extent, the theory and 
modeling above shed light on the mystery. 

Science solves mysteries. An important mark of 
science is quantification. Without Newton’s 2nd Law 
(F=ma) the specific amount of force required to send a 
rocket to the sky was unknown although we recognized 
that speeding up a heavier object needed more force. 
Similarly, we understand the clinical values of early 
prevention but planning and control may be blind 
without quantitative relationships. The approximate 
solutions in Section 2 quantitatively reveal the 
following transmission dynamics of influenza for 
interventions: 

(1) The transmission of influenza follows the 

exponential law ( tte ⋅)(α in solution 6). That is, 
incidence increases or decreases exponentially. This is 
why the number of ILI patients can dramatically grow 
in a week, leading to an epidemic. When a novel virus 
strain emerges, such an exponential growth effect can 
be easily exaggerated by modern aero vehicles between 
continents to cause a pandemic. 

(2) Incidence of influenza is highly 
auto-correlative. Specifically, incidence at present (P1) 
is proportional to the incidence at a previous moment 
(P0). This intra-resonance property together with the 
exponential response to determinants [P1 

∝ tteP ⋅⋅+ )(

0

0
0 )( α

α
β

] explains why even slight external 

stimulations can result in a rapid increase of incidence 
when prevalence is above a critical level. This proves 
that early interventions such as controlling initial 
incidence well below a baseline are crucial. 

(3) When incidence is small enough its temporal 
variation is approximately linear, that is, solution (7) 
can be simplified as: 

[ ] '
)(
)(.)()(

0

0

0

0 ε
α
β

α
β

α
α
β

+







−+⋅⋅








≈

t
ttttP     (16) 

This is why small and quasi-linear fluctuations are 
often observed in weekly ILI graphs during the summer 
when incidence is very low. 

(4) To minimize incidence, solution (6) requires 
β0/α0 <0 and )(/)( tt αβ >0. This means that early 
quarantine of patients from the community (β0 <0), 
promotion of herd immunity with timely vaccination 
targeting circulating strains (smallest α0), persistent 
social distancing [ 0)( <tβ ], and recovery faster than 

transmission [ 0)( <tα ] are key to the control of flu 
epidemics. 

(5) The exponential and power terms in solution (7) 
explain why weekly ILI often assumes bell-shaped 
and/or power law shaped curves. 

(6) The simulation and projection based on the 
quantitative model verify the effects of the identified 
factors on the seasonality and weekly variations of 
influenza. The statistically significant P values affirm 
that the possibility of obtaining these modeling results 
by chance is extremely low (1/1,0000 ~ 5/1,000). 

The identified explanatory variables meet the 
requirements for potential causative factors: 
1) The associations between influenza activity 

(seasonality and weekly variation) and the 
explanatory factors are consistent in different 
climate zones, continents, hemispheres and 
populations. This is demonstrated by the 
correlation coefficients and corresponding P values 
in Tables 2, 4, and 5. 

2) The associations are consistent for different 
indexes of influenza activity, which include the 
total number of influenza patients in a country/area 
(Finland, Australia), the ILI consultation rates 
(UK, Italy, Hong Kong), the percentage of positive 
influenza isolates (Colombia, Singapore and USA), 
and respiratory disease morbidity (Rio Grande, 
Brazil). 

3) The associations are consistent for both annual and 
weekly variations of influenza activity, because 
the same variables were applied to the simulation 
of seasonality and the projection of weekly 
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influenza indexes. 
4) The associations have strong (r = 0.5–0.8) to very 

strong (r = 0.8–0.9) strengths in terms of 
correlation coefficient (no relative risk or odds 
ratio was calculated). This is demonstrated in 
Table 4 and by the high correlation between model 
output and the actual indexes in Table 6. 

5) The associations have reasonable temporal 
relationships, for variables in the same month were 
fed in the model during the seasonality simulation 
and variables in the previous week were the input 
of the model in the simulation/projection of weekly 
influenza activity. 

6) The associations also show dose-response 
relationships. This is reflected by the high 
(0.84-0.98) coefficient of correlation (R2) in Table 
5 and Table 6. Note that these non-linear, good fit 
dose-response relationships are based on multiple 
variables. Nevertheless, as shown in Table 3 and 
further verified by R2 in Table 4 (BC, Canada) 
significant dose-response relationship can also 
exist between influenza indexes and a single 
variable such as sunny hours per day. 

7) Mitigation of annual variations of the variables 
renders weaker seasonality of the flu (as shown in 
Table 7), suggesting that removal of the 
explanatory factors might cause the phenomenon 
(seasonality of the flu) to disappear. 
The identified explanatory factors are biologically 

plausible and consistent with present microbiology, 
pathology and epidemiology knowledge: 

(1) Temperature and humidity have been reported 
to have important impacts on the shedding, survival and 
transport of influenza virus as well as host immunity. 
Early human experiment to investigate temperature 
influence on ILI in the Ming Dynasty of China 
indicated that prisoners who experienced abrupt 
temperature change were much more likely to develop 
flu-like symptoms [26]. Using guinea pigs as hosts, 
Lowen et al [14] found that animals shed more viruses 
when air temperature dropped to 5°C from 20°C. 
Studies by Eccles [27], Le Merre et al [28] and Johnson et 
al. [29] suggested that cold air inhaled can reduce the 
respiratory defenses such as mucociliary clearance and 
phagocytic activity of leukocytes and that cooling of 
the body surface can cause vasoconstriction in the nose, 
resulting in reduced blood flow and leukocyte supply 
and increased susceptibility to infection. Cold 
temperature also influences host behaviors by driving 
people to stay indoors, increasing the proximity 
between susceptible individuals and infected hosts. 
Similar to temperature, humidity has impacts on the 
airborne length and transport of influenza virus and 
host immunity. Buckland et al. [30] found that viruses on 
a glass surface remain viable longer when humidity 

was low. In a dry atmosphere, virus-carrying droplets 
expelled from infected hosts can remain suspended in 
the air for longer period of time due to evaporation, 
increasing the likelihood of transmission. Williams et 
al. [31]’s study indicated that inhalation of air with low 
humidity over hours could dry the mucus, impairing 
host defenses against infection. Earlier this year, 
Shaman and Kohn [32] reported a greater association 
between virus survival and low absolute humidity (AH). 
The strong correlation between influenza activity and 
low dewpoint temperature in temperate and arctic 
regions found in this study supports the above findings 
from other authors. Because dewpoint is a 
comprehensive indicator of temperature and humidity, 
its measurements reflect absolute humidity with less 
chance for misinterpretation than the effect of pure 
vapor amount in the air. It is noteworthy that in tropical 
areas, influenza activity is weakly associated with the 
absolute deviation of dewpoint from its annual mean. 
This phenomenon arises because on the one hand lower 
dewpoint (larger absolute deviation from the mean) 
still facilitates influenza spread, but on the other hand, 
high dewpoint (also larger deviation from the mean) is 
related to hot temperature and rainfall in the tropics, 
which may encourage people to congregate indoors for 
shielding, leading to closer contact between susceptible 
and infected hosts and exposure to re-circulating air 
and lower dewpoint set by indoor air-conditioning 
system. High dewpoint can also promote the activity of 
some other pathogens (such as Rhinovirus [33]). 
Infections by these pathogens can cause flu-like 
symptoms. In laboratories, influenza viruses are 
cultured at 31°C – 38°C to obtain optimal growths. At 
24°C or lower temperatures, in vitro of viral RNA 
polymerase decreases by more than 84% [34]. At 
environmental temperature of 15°C, human 
nasopharyngeal end inspiratory air temperature drops 
to 28.1°C [35], which is well below the optimal 
temperature for virus multiplication. High dewpoint 
impedes heat and moisture exchanges between the body 
and the environment, affecting metabolism and 
immunity [36]. These are very likely to solve the mystery 
why influenza (including human avian flu cases) tends 
to peak in hottest months and the rainy season in most 
tropical countries. If this hypothesis is true, then the 
transmission efficiency at 30°C and 20°C could be 
equal (Lowen et al. [37]), for both of temperatures 
produce larger absolute deviation of Td from its annual 
mean. This suggests that in tropics, direct contact or 
“short-range” transmission indoor may dominate 
influenza spreading.  

In desert areas, flu peaks can occur in cooler, 
sand-stormy and driest (low dewpoint) months. For 
example, this study found that most of human avian flu 
cases in Egypt have been reported from December to 
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April when temperature and humidity successively 
reach their minimums. 

In most temperate and arctic regions, influenza 
activity is associated with low dewpoint only, because 
the sunny days and pleasant temperature (18°C – 24°C) 
in the summer inhibit virus breeding, promote host 
immunity and encourage outdoor activities. In the 
winter of these areas, chilly temperatures near the 
ground due to net radiation flux from the surface to the 
space over night often cause an inversion, leading to 
pollutants / bioaerosols being trapped close to the 
ground for days, with possible effects on influenza 
spread. Under such circumstance, a N95 mask will 
prevent the flu by keeping the respiratory tract warm 
and humid (higher Td) in addition to virus filtration.  

The fact that influenza peaks when dewpoint 
significantly deviates from its annual mean in the 
tropics brings a concern whether the more frequent 
extreme climate events related to global warming might 
contribute to the onset of a pandemic. 

(2) Solar radiation directly affects virus survival 
and host immunity. Noteworthily, 13 out of the 18 
human avian flu cases in Hong Kong showed up in 
December 1997 when sunshine was 45% less than 
normal in the month. Both classic and recent studies by 
Hollaender et al. [38] and Sagripanti et al. [19] have 
indicated that the influenza virus is sensitive to the 
electro magnetic spectrum near 254-nm and can be 
inactivated by solar radiation. This germicidal effect is 
unnecessary to be consistent in both indoor and outdoor 
environments, as indoor conditions involve other 
confounding variables that may mask the primary 
effect of UV radiation. In addition to virus inactivation, 
solar radiation exposure (UVB band in the electro 
magnetic spectrum) and length of daily photoperiod 
affect a host’s vitamin D level and emotion (mood), 
which are important to the immune system. Vitamin D 
modulates the effectiveness of macrophages [39] and 
induces antimicrobial peptide gene expression [40]. 
Emotion style can affect the susceptibility to the 
common cold [41]. Significantly lower vitamin D levels 
in patients were observed by Cannell et al. [18]. In 
United Kingdom, the population’s vitamin D levels 
were found to be minimal around January each year, 
corresponding to the seasonal peak of the flu. In recent 
years, hypothesis regarding solar radiation and vitamin 
D roles in influenza seasonality has aroused great 
attention in scientific circles. To a considerable degree, 
the simulation and projection results of this study 
provide a strong, global and quantitative support to the 
hypothesis in terms of sunny hours (photoperiod). More 
importantly, this association is quantified by an 
exponential quarter (1/4) power law of solar radiation 

(
4/1

hSe− ). Interestingly, from Table 4, it seems that the 

association (in terms of correlation coefficient - r) is 
most distinct in middle latitudes and gradually weakens 
toward both poles and the equator, where precipitation 
and dewpoint begin to play more crucial roles. The 
reason for this deserves further study but a plausible 
explanation could be that the intensity of solar 
radiation is much more consistent all year in these 
climate zones than in middle latitude areas. For 
example, in Longyearbyen, Svalbard (78°13’N) the 
average monthly UV index varies between 0 and 2 
although daily hours of sunshine can increase from 0 in 
the winter to 9 in May. More extremely, the average 
monthly UV index is nearly a constant (11) in 
Singapore (01°17'N). Consequently, populations in 
these areas receive relatively stable amount (dose) of 
UVB in different seasons even if they stay outdoors 
everyday. The net effect of this phenomenon makes the 
actual amount of solar radiation received in these 
regions rely more on precipitation and extreme 
temperatures that encourage lengthy indoor stays. 

(3) The positive association between influenza and 
precipitation found in this study is consistent with the 
findings from others. The association has been reported 
more obvious in tropical areas such as Dakar, Senegal 
[42], Pune, India [43], Colombia [12], and Indonesia [44]. In 
Thailand, after the hot and dry season, the number of 
influenza cases rapidly increases at the beginning of 
rainy season [45]. In the Democratic Republic of the 
Congo, an epidemic involving influenza virus A (H3N2) 
had an outbreak in December 2002, infecting more 
than 31,000 people with a case-fatality rate up to 3.2% 
[46]. A retrospective study on the weather background of 
the epidemic indicates that precipitation was excessive 
in the month, which is the hottest period of a year in the 
country. In Brazil, a seasonal southward traveling wave 
of influenza was identified [13]. Interestingly, during the 
simulation the traveling wave was found coincide with 
the movement of rainfall pattern. There are a couple of 
possible explanations for this association: Precipitation 
is usually correlated to weak solar radiation, reducing 
germicidal effect and Vitamin D level. It can also 
affect host behaviors, mainly the frequency of contact 
between susceptible individuals and infected hosts and 
the proximity of humans and poultry, for precipitation 
can “lock” people indoors for days, increasing 
transmission opportunities. This effect may be 
exaggerated if poor indoor ventilation or a dirty air 
conditioner [47] results in high airborne concentration of 
the virus (transmission of SARS is an example). 
Human cases of avian influenza in Thailand and 
Vietnam have been found to peak during both the rainy 
season and the burning season. The transmission of 
avian influenza to people during these periods is 
enhanced by the fact that poultry raised for human 
consumption are often kept within several meters of 
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where people live (WHO 2004). Precipitation affects 
humidity. A considerable portion of ILI is found to be 
caused by non-influenza pathogens [48], some of which 
are more active in humid environment related to 
precipitation. Simply with gray color, a rainy/snowy 
canopy of the sky may induce negative emotions [49], 
which can significantly reduce natural killer (NK) 
cytotoxicity in the immune system [50] and increase the 
susceptibility to the common cold [51]. In the tropics, 
pedestrians often get wet in thunderstorms or showers, 
which may also contribute to ILI especially when 
people enter an air-conditioned room with wet clothes 
and experience an abrupt drop of dewpoint. The 
association between the flu and precipitation might 
partially explain why human avian flu cases have been 
concentrated in tropical regions such as Indonesia, 
Vietnam, Thailand, and south of China where annual 
rainfall is remarkably higher (with more wet poultry 
industries) than other countries. 

In Table 4 a very weak association between 
rainfall and ILI is observed in Hong Kong. This is 
because the effect of precipitation has been masked 
(confounded) by the first flu peak in the spring when it 
is often foggy or overcast with less rainfall and lower 
dewpoint. 

(4) Social and behavioral factors have a broad 
scope. They can include influenza vaccination, diet and 
nutrition, long public holidays, school breaks, patient 
mobility, closure of schools or public places, and even 
time shift for daylight saving. In this study, only long 
public holidays and major school breaks are taken into 
account in the simulation and projection. Since the 
range of variation of λ is set between 0.85 and 0.99 
and coefficients of correlation (R2) of model output are 
above 0.84, it is estimated that socio-behavioral factors 
play a role of less than 30% (1- 0.85 × 0.84) in 
influenza seasonality. Similar to other variables, 
socio-behavioral variables could also mask the effect 
of other determinants. For example, in Thailand, the 
number of influenza cases begins to decrease in the 
middle of the rainy season [44] when students take a 
3-week school break. This socio-behavioral effect 
together with other variables could render a distorted 
(e.g. negative) association between influenza and 
precipitation. Therefore, in those regions where solar 
radiation, temperature, precipitation and 
socio-behavioral factors each has different phase in 
their annual circles, a combination of the variables can 
conceal the true effect of a determinant or result in two 
or more flu peaks (e.g. in Colombia, Thailand and 
Hong Kong). Under this circumstance, a weak or 
reverse association is insufficient for removing an 
explanatory factor, instead, true associations need to be 
verified by stratification and variables must be put 
together to achieve a sound explanation for influenza 

activity. 
In sum, the identified explanatory factors are very 

likely to be the causative factors of the seasonality and 
weekly variation of influenza. Nevertheless, the Theory 
and Model neither confine explanatory factors to the 
parameters used in the study nor suggest other 
variables are insignificant. In contrast, they have 
provided a more opened and generalized algorithm 
[Eq.(9)] that can incorporate any other explanatory 
factors identified from observations, experiments, 
literature review, and clinic trials (e.g. circulating 
strain of virus, effects of vaccination and so on). 

The GR Model has demonstrated an ability to 
produce better modeling results than simple linear 
multiple-regression. Example in this can be seen from a 
comparison between Fig.5 and Fig.6. 

The fact that only when ε* and β0/α0 in Eq.(10) 
were assigned numerical values could the model 
achieve the best results suggests that patient mobility 
and non “person-to-person” cases do contribute to the 
change in the number of influenza cases in a 
community. Although the existence of non 
“person-to-person” cases is controversial, the fact that 
some sporadic human H5N1 avian flu cases had neither 
contact with each other nor exposure to infected poultry 
suggests that similar cases are possible for other 
influenza virus strains. These cases may carry virus 
without clinical symptoms for a longer period of time 
than we currently recognize and could be infectious; 
the hosts involved might not get sick unless their 
immunity is weakened and are easily missed by 
surveillance. If this is true and these cases 
simultaneously triggered to be sick by some causative 
factors (e.g. sharp change in temperature, lowered 
vitamin D level and polluted air) are omitted in the 
basic reproduction rate, then incidence could be 
considerably underestimated. 

For years, we have tried to verify hypotheses 
regarding the determinants of influenza seasonality and 
weekly activity, but confusions resulting from the 
inconsistent (or even contradictory) findings in 
different studies, ethic concerns, and shortage of budget 
for expensive experiments have retarded our progress. 
The model developed in this study offers an alternative 
strategy for hypothesis testing, clarifying some 
inconsistent findings, and narrowing boundless 
explanatory factors down to some key variables 
through simulation and projection results of high 
coefficient of correlations. The study also demonstrates 
that a single factor is unlikely to explain influenza 
seasonality and weekly variations; rather, a number of 
biological, environmental, social and behavioral factors, 
each playing an essential role, act together in a 
complex way to produce the seasonal and weekly 
variations of the flu. This inference agrees with 
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contemporary epidemiologic concepts and models in 
regard to the occurrence of a disease. 

In additional to hypothesis testing, seasonality 
simulation and weekly incidence forecast, the 
established model can be further explored for the study 
of prevention strategies and analysis of intervention 
effectiveness. Examples in this aspect could be an 
estimation of ILI reduction owing to better timing of 
vaccination, a study on appropriate indoor dewpoint, 
and an assessment of the effect of vitamin D 
supplement in rainy and perpetual night seasons. 
Although the study was focused on seasonal influenza, 
some findings and principles may also be applicable to 
pandemics. Other contagious diseases, as long as they 
have similar transmission mechanisms to influenza, can 
also be simulated and predicted with the GR Model. 

There are a couple of limitations in this study. 
Modeling was based on an approximate solution to the 
original governing equation. It was assumed that 
influenza indexes are proportional to the total number 
of influenza patients in a community. Such an 
assumption may not always be true. The insufficient 
length of data and surveillance unavailability in some 
countries make it difficult to test the universality and 
long-term stability of the model. Solar radiation, 
temperature and precipitation are related to each other 
with solar radiation being the ultimate energy source, 
but stratification was not performed to analyze the 
potential confounding relationships. Alternative 
explanations for the associations need to be more 
thoroughly considered. Parameterization of 
social-behavioral factors contains subjective and 
experience-based constituents. Finally, more clinical 
evidence is required before drawing precise 
conclusions. Despite these limitations, the use of the 
model does not require a perfect understanding of all 
determinants and their relationships. The principle and 
technique can be applied as long as a stable 
quantitative relation is found. 
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