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ABSTRACT

The multiple atmospheric equilibria are studied by using a barotropic vorticity equation with ther-
mal forcing and dissipative effects. Different low-spectral models are used to discuss the variations of the
equilibrium states, with the results that the multiple features of equilibrium states depend heavily on the
truncations of the spectra, and the low-spectral model has obvious shortcomings in solving non-linear e-
quations ,suggesting that one has to be very careful to employ highly truncated low-spectral model in ap-
proximating partial differential equations.
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[. INTRODUCTION

Since the truncated spectral method was suggested by Lorenz (1960) the highly
truncated low-spectral model has repeatedly been used to examine equilibrium states in
non-linear system with forcing and dissipative effects. In 1979 there were papers (Vick-
roy and Dutton, Wiin-Nielsen, Charney and DeVore) in succession that dealt with the
truncated spectral models to solve non-linear vorticity equation. Similar papers were also
published in China (Miao and Ding, 1985). These papers studied the responses of atmo-
sphere to the thermal forcing and the topography and discussed the sudden change of cir-
culations. However, the solutions of ordinary differential equation derived by method of
the finite truncated spectra are not necessarily the approximate solutions of the partial
differential equation, and the increase of the truncated spectra may cause change in the
equilibrium states. As a preliminary study we will examine numerical solution of the
truncated spectral models with 3, 4, 5, and 6 spectra respectively, and discuss the varia-
tions of the equilibrium states.

I. BASIC EQUATIONS

The quasi-geostrophic vorticity equation with thermal forcing and dissipative effect
may be written as follows

DV TG V) + B KV — KV =0 W

where — K %y " represents the vorticity effect caused by thermal forcing, K <\/?yp is the
Ekman-friction dissipation, 8§ = Lctgm/a,L is the horizontal scale of atmospheric mo-
tions, a is the radius of the earth, K = Dy/2H ,Dyis the thickness of the Ekman layer,
H is the scale height of atmosphere.

Consider the motion in a rectangular region:z (0, 27),y (0, #). Appropridte bound-
ary conditions for such a channel are
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¥ is periodic variation at z = Oand 2m.
The basic functions for the above boundary conditions may be taken to be orthonor-
mal eigenfunctions F; of Laplacian operator, which obey the following equation

VZF.'+;\'F.'=0- (2)

Expanding y and %" in terms of the basic functions F;, namely, setting

)-S5

i\ P

and substituting (3) into (1) gives

S+ S T S - TS o — s L

=1 ji=1 E=1 ;—-1 i=1

=K ZA.-F.-(zp.- — ). €))

Multiplying the equation (4) by F,, then integrating over the region D, and utilizing

- [0 (s 1)
,,UF’F'“—{l (s =1)
yields
3F, aF . oF , oF
Au¢a+ Ez}m“/)t“/’nﬂ ———5 X )F,dz
— 83 | FFaT = Kl = Ko )
Letting
aF. _af__ R Fa),
—J:J —_— ¥ & )F’,d z
OF,Fn F, Fa
_57? H(E; 5 % )F,d dy
gives Dim, = Dpst = Dy =— D s
Setting

w2

aF,
C,, =—1-”2 JJ—F#zdy,

Eq. (5) becomes
P =KD DG = 2)Dinr¥a

+ 8D Cut + KA — 9] kE<m (6)
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. TRUNCATED SPECTRAL MODELS
1. The spectral model with 6 basic functions

Choose the orthonormal functions F; in the following forms

F,=F, =~/ 2cosy, F, = Fy = 2cosazsiny

Fy = F,; = 2sinnzsiny, F,=F;=~/2cos2y
Fs = Fy = 2cosnzsin2y, F¢ = Fy = 2sinnzsin2y,

we obtain from (2)

M=1, A'Z=Ac=1+"2v M=4, As=36=4+nz
Dl32=8\/ 2n/37t, D354 =64'\/ 211/1571
Des = 32n/15m, D s = 64 2n/15%

Cypy=—C¢s=—Cypp=0Cs5=—n

and for the others, D;n, = 0,C;, = 0.
With these choices, Eq. (6) becomes

Ya=—K@s — 91

Y =— (@ 1Pa — B1)Yr — biycy — K (Ppx — ¥x)
¢.L = (a¥a — BYx + bihethu — K@ — 92)
¢c = e(Px¥Py — PL¥u) — K e — 9c)

T/}M = (027/14 - ,Bz)¢1v — bapcr — K(¢M - ¢n;)
Pn = @atps — B2)Pu + bavpc¥px — K(pw — 9&)

D

where
Daxe/5 = Duuv/4 = Dexn/8 = Dewr/8 =8 \/_2_71/1577
by = n®Dexn/(m?* + 1), by = (n® — 3)Dcxn/(n* + 4)
a) = thAKL/(nz + D, a; = (nz + 3)DAMN/(n2 + 4)
¢ = 3Dcxn/4, B = ﬂ"/(nz +1, p: = ,371/(112 + 4).

It is easily seen that the solutions 9: of (7) can be written as sum of the stationary
solutions #: and evolutionary solutions q@()

¥ =P + @) ¢))

Substituting (8) into (7) gives the equations with respect to %;;

'PG _T/’: =
&P+ 5,9cPy + K@x —9yx) =0
1% +0.PcPu — K@ —yL) =0 9

— A

e(PxPy — PoPu) — K@ — ) =0
d Py + b:9cPx — K@y —yn) =0
| d2%n + 0.9, — K (P — Pue) =0
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and the equations for @ (neglecting the non-linear terms) ;

o =— Ko
& =—d@ — a P — 0Py — 0Py — K
@ =d g + a1 P + 0Py + 5% — K@r aom

@ = ¢ (Txmy + Pvx — Pu — Pun) — K@
o =— da@y — a2Pxu — 0P — b2Popr — Ko
( v = dogw + a¥upn + 029k + b¥ex — Koy

where d = 6134 — fi,d2 = a4 — B2
First consider the equations (9). For simplicity, setting y» = ¢y =9 =0, (9)
becomes

Pa = 9a
AP+ 0%y — K@k —9x) =0
\¥x + 51PcPu — K¥P = 0 an

e@PxPy — PLPu) — K(Fe —9¢) =0
d2Pw + 02%cPL + K9Py = 0
| d2Pu + 5:2PcPx — K¥x = 0.

It is easily seen that if 3¢ is assumed to be known we may obtain from (11) that

ﬁ« = T/’A'
Px = [K%byyr Bc* + K*(K* 4+ ddyx /D
P = [— Kdobboyr ¥ + Kdyypr (K* +dD1/D 12)

P =[— K (d,+d2)Pc]/D
Pv = LKbyb,%%% Bc® + KbpaBo(K? — dydz) /D

where D = b2 b ' + 2b1b,(K? — dd) B + (K2 + 4D (K2 4475 .
Substituting (12) into the fourth equation of (11) gives

aowcg+al$08+ ...... +a8@'c+ag=0 (13)

where

ao = bibs, a,=—0blbiyl, a,=4PIK* —dd;), a3=— 46303(K? — d d)yé
as = b33[4 (K2 — d,1d)? + 2(K? + dD (K2 + d3) — eK%, p3° ]

as =— 2633ps [2 (K> — d,d;)* + (K* +dD (K +dD ]

ag = 2b.b,[ 2(K? — d1d ) (K% + d3)(K? +d3) — eK%b, px (K — d d ) ]

a7 =— 4dbybope (K2 — dyd ) (K? + d3)(K? + d3)

as = (K* +d3)? (K* 4+ dD* — eK%, pa (K> +dDH(K* 4+ d3)

gg =— (K* +d})* (K +dD’ys.

Solving (13) gives nine roots for Pe. Substituting every real root of Pcinto (12) yields an
equilibrium state
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@’_=7/’_AFA+-’7’-xe+$LFL+70F0+EMFM+7’_NFN- (14)

For a given set of ¥4, ¥x » and 9¢ , (13) may have several real roots, it shows that there
may exist multiple equilibrium states.

After the equilibrium states are obtained the stabilities of the equilibria are neces-
sary to determine. According to the theory of the stability, the stability of equilibrium
state depends on the characteristic equation of (10). When the roots of the characteristic
equation have negative real part or the maximal real part of roots is less than zero the e-
quilibrium states are stable. If one of the roots of characteristic equation has positive real
part the equilibrium states are unstable. For this purpose introducing @(t) = Rie*(i =1,
2,+++,8) into (10) yields

( (0’+ K)Rl = 0
(0 + K)R; 4+ a9 Ry +d\R; + b:%yRy + 53R = 0
—a1PxR, —d R, + (0 + K)R; — b)PuRy — 0,P:Rs = 0 15)

— eyPnRy + ePyRy + (0 + KRy + eYLR; — ePxRe = 0
aPx R,y + bypcRy + b, YR, + (0 + K)Rs +dRe = 0
L — azleMRl - bZ@-LRZ _ bgva4 -_ d2R5 + (0’+K)R5 == 0.

Solving (15) gives the criterion of the stabilities of the equilibrium states.

2. The spectral model with 5 basic functions

For convenience of comparison, five basic functions F4, F¢, F., F¢, Fy are taken
from the above six basic functions so that the equations governing the stationary quanti-
ties for the case with five basic functions are easily obtained as follows

Pa = 9i
d1PL + b1PcPhy + K(Px — 9yx) =0
diPx — K§, =0 (16)

ePxpn — K@ —y9e) =0
vach - K:lpy = 0-

The equations governing the evolutionary quantities are

é’A =—Kg,
x =—d\@ — P — 5Pv@ — ey — Kok
o =dgx +aPxp — Kq, a7)

@ = ePxpx + Py — K
v = b¥Pxr + 0Pk — Ko

As shown above when P is assumed to be known, we may obtain from (16)

Px = KZT/’)?/D
P, = Kdyx /D 18)
Py = szvc'/’l? /D
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where D = K2 +d2 + bb, %c° -
Substituting (18) into the 4th equation of (16) yields

Qo @—cs + a, Tﬁc‘ + .- +a47ﬁc +a5=10

where

a, = bibg

a, =— bibiyc

a, = 2(K* 4+ di)bb,

a3 =— 2(K* + df)bxbﬂﬁc'

a,= (K*+ 4}’ — eK%, y2’

as =— @} + K.

a9

Solving (19) for P and substituting the P, with real root into (18) gives an equilibrium

state corresponding to the real root P¢:

¢=¢AFA +¢KFK+¢LFL+¢CFC+¢NFN)

20)

then the stability of the equilibria may be determined by the characteristic equation of

an.

3. The spectral model with 4 basic functions

Take F4, Fx, Fc, and Fy as the basic functions, we obtain from (6)

Pa = Y4

b1 PcPw + K(vx - 1/91?) =0
ePxPy — KFe —yc) =0
boPc¥Px — K9y =0

@n

and the evolutionary quantities obey (dropping the nonlinear terms) the following equa-

tions

o= K(PA

o =— biPey — b — Kox

@ = ePxy + P — K@

o = baPemx + ba¥xp — Kov.
Assuming P¢ in (21) to be known yields

Px = K21/’1;/D
P = Kbﬁﬁc'ﬁ; /D

where D = K? 4+ b,b, Pc , substituting (23) into (21) leads to

60%;° +a, P! + o +aPe+as=0

22

(23

24
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where
ag = b2b2
a, =— b%%"ﬁa
a, = 2b,b,K*?
a; =— 2b,b,K%yp¢
gy = K' — eK%, px°
as =— K'¥¢.

Analogously to the previous precedure, solving (24) gives an equilibrium state for a real
root Pc, i-e€.,

T =0sF4s +PxFx +PcFc+ PnFu, (25)

and its stability may be determined by the characteristic equation of (22).

4. The spectral model with 3 basic functions

Taking F., Fx+ Fcto be basic functions yields the equations governing the station-
ary variables

Pa =9
Px = ¥x (26)
7’-0 = 1/’5

and the evolutionary variables obey the equations

o =—Kqp
o =— Ko @n
@ =—Kq.

It is easily shown that for the present only one equilibrium state is obtained, namely,
Y=y Fs+9xFx+ycFc=9". (28)

Because the eigenvalue 0 = — K is negative the equilibrium state is stable.

IV. EXAMPLES OF CALCULATIONS

In order to compare the features of equilibria in the different truncated spectral
models we calculated the equilibrium states for the four spectral models respectively. In
calculations we take K = 107%,L/a = 0. 25,n = 2 ; and let ¢4 and yx be fixed values so
thatys = 0. 15,9x = 0.40, and 3, is taken to be changing from —0. 3 to +0. 3 for the
spectral models with 6, 5, and 3 basic functions, but changing from —0. 6 to +0. 6 for
the spectral models with 4 basic functions. Figs. 1, 2, and 3 give the varying curves of
%c with p7. Fig. 1 shows the composite chart of equilibria in the plan ¥c — ¢ for the
spectral model with 6 basic functions, and Fig. 2 shows those for the spectral models
with 5 and 3 basic functions. The calculated results show that there are no difference be-
tween the equilibria of the truncated spectral models with 3 basic functions and 5 basic



102 JOURNAL OF TROPICAL METEOROLOGY Vol. 3

functions. The figures show that for the spectral model with 6 basic functions the re-
sponses of atmosphere may be 1,2,3,4,and 5 equilibrium states when ¢¢ varies ,reflect-
ing the multiplicity of the solution of nonlinear equation (1). For the continuous varia-
tion of 3¢ the responses of atmosphere have the feature of sudden change and it reflects
quite well the catastrophe of the atmospheric circulations.

0.3t V. 0.3}V,
0.2 0.2
..
0.1 ) 0.1
v v
—0.3—0n.2—0.1 0 0.1 0.2 0.3 —0.3—0.2—0.1.710 0.1 0.2 0.3
—0.1 ~0.1
S i)
—0.2 —0.2
—0.3 —0.3
Fig. 1. Composite chart of equilibria in Fig. 2. The same as Fig. 1 except with
spectral models with 6 basic 5 and 3 basic functions truncated.

functions truncated.

However, Figs. 2 and 3 show that for the truncated spectral models with 5, 4, and
3 basic functions the responses of atmosphere do not possess the sudden change feature,
and they are not corresponding with the real states of the atmospheric motions. Especial-
ly for the truncated spectral model with 4 basic functions the changes of stabilities of the
equilibria take place, and unstable equilibria are more than the stable equilibria. It shows

0. 3 \p.: 0. 3 \P,
0.2 0.2
0.1 0.1
......... A ¥, L2
=0.3-0. 'z'—(xko----d-]---(;;‘-z’-'-g_‘s =0.3-0.2—0.1,70 0.1 0.2 0.3
Z0.1 (—0 1
—0.2 —0.2
—0. 3 —0.3
Fig. 3. The same as Fig. I except with 4 Fig. 4. The same as Fig. ! except with 6 basic
basic functions truncated. functions truncated. The solid lines are

for steady equilibria and dashed lines
for unsteady equilibria.
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important effects of the truncated spectral model on the calculated results. In other
words, for a determinate physical problem different results will be given if different
truncated spectral models are used. It is obviously doubtful, and it may also be caused
by using casually a set of finite ordinary differential equations (6, 5, 4, even 3
equations ) to approximate the partial differential equations (1), because the solutions of
these ordinary equations do not necessarily converge to the true solutions of the partial
differential equation. Moreover , the approximate truncated spectral model may lose some
principal components of the physical phenomena described by the original partial differ-
ential equation, and it may cause the distortion of the calculation results.

In order to further verify the calculated results above, we change the values of yx
and calculate again the above truncated spectral models. For the present study, take ¢z
= 0. 30 and let ». change from —0. 30 to +0. 30, the calculated resluts are drawn on
Figs.- 4, 5, and 6. It is easily seen from the composite charts of equilibria from Figs. 4,
5, and 6 that the influences of the differences of the truncated spectral models on the so-
Iution of (1) is very important, and it warns us of carelessness utilizing a highly truncat-
ed low-spectral model to approximate a partial differential equation.

0.3} ¥ 0.3

0.2 0.2

0.1 0.1

v danmmmoommm ==

-0.3=0.2=0.1 /|0 0.1 0.2 0.3 Z0.3 0.2 0.1 10

%o 4

—0.2 -0.2

—0.3 -0.3

Fig- 5. The same as Fig. 4 except with 5 and Fig. 6. The same as Fig. 4 except with 4
3 basic functions truncated. functions truncated.

V. CONCLUSIONS

It is shown from the calculated results above that by using a finite spectral model to
approximate a nonlinear partial differential equation the solving process becomes simple,
and the physical meanings of the solution are clear. These are its advantages. However,
to obtain an appropriate solution one has to be very careful in choosing the approximate
truncated spectral model, because the solutions of the chosen finite ordinary differential
equations are not likely to converge to the true solutions of the partial differential equa-
tion. In addition, how many truncated spectra are appropriate to describe the physical
phenomena which are contained in the partial differential equation, or can the chosen
truncated spectra contain the primary parts of the physical phenomena? If the chosen
truncated spectral model could not describe the primary features of the physical phenom-
ena it is obvious that their true features which are desirable to be examined could not be
obtained by using this spectral model.
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