Vol. 2 No. 1 JOURNAL OF TROPICAL METEOROLOGY June 1996

CHAOTIC OUTPUT OF SST FLUCTUATION STOCHASTIC MODEL
WITH GIVEN PARAMETERS®

Yan Shaojin (J243##) and Peng Yongqing (# k)
Nanjing Institute of Meteorology, Nanjing 210044

Received 27 July 1994, accepted 6 January 1995

ABSTRACT

Starting from the Saltzman’s air-sea stochastic climatic model, we have derived a langevin-type e-
quation describing SST fluctuation and the related Fokker-Plank expression, which were then numeri-
cally solved with parameters given, yielding the probability density curve P (x, t) of multiple bifurca-
tions, with the Cantor set of images given in phase space of P (x,¢) and P (x,t+7), thereby indicating
that chaotic output comes from the random system under the conditions of the above parameters.
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I . INTRODUCTION

In his numerical study of thermal convection, Lorenz ( 1963 ) discovered an entire-
ly deterministic system of third-order ordinary differential equations, which can give
seemingly disordered aperiodic output over a given range of parameter values, referred
to by himself as “deterministic aperiodic flow”. Subsequently, numerous studies show
that as long as the deterministic equations become more or less complicated, “random”
behaviors are likely to take place in the system, which is the intrinsic stochasticity typi-
cal of a dynamic system, and actually the result of extremely high sensitivity of the sys-
tem to initial conditions. Deepened exploration of chaos mechanisms indicates that the
chaos associated with the intrinsic random property differs utterly from that of common
random phenomena. Such stochasticity is not responsible for irregular behaviors but or-
derly ones. This orderly property gives rise to a countless number of embedded autosim-
ilar geometric structures and is marked by universality.

This issue has recently been a growing concern. Are chaotic behaviors displayed in
a dynamic system produced merely by a complicated deterministic system? Is a random
system possibly responsible for chaotic output? Under what conditions can such ocutput
be obtained? They are no doubt of great importance to climatological research. About a
decade ago, in dealing with air-sea interaction, Saltzman, by considering the stochastic
term of the original dynamic-climatic model, discovered that as this term grows, the pe-
riodic solution of the deterministic dynamic system becomes disintegrated step by step so
as to form a wide-band frequency spectrum, a result that needs to be further addressed.
The aim of the present paper is to investigate if there are probably any chaotic behaviors
by the system in the context of the Saltzman model.

I. BASIC RELATIONS DESCRIBING CHAOTIC BEHAVIORS OF A RANDOM
SYSTEM

The equation for a random system can be given as
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%rt—'=f.(1.» ...... yZ,) -+ 7.t 1= 1,2, ,n, (1)
where 7, represents the stochastic term . Following the theroy on random processes ,
if 7; meets the condition

(7:(8),7;()) = D;,3(t), (2>
with & denoting the Dirac function and D,, the correlated deviation, then the Fokker-
Plank equation in relation to (1) takes the form

n "o 2

%”+ Z'_)a%(f..p)—%g Z;—%D.m=0, (3)
where P is the probability density function. (3) is also called the principal equation for
the evolution of probability density. Egs. (1) and (3) are normally the basic relations in
dealing with chaotic behaviors of a random system. Theoretical study (Kapitaniak,
1988) shows that for chaotic behaviors of a random system, one of the important condi-
tions is that with certain parameter values available, the probability density curve has
multiple maxima, i.e. , multiple bifurcations. Next, in view of the fact that the proba-
bility desity function P (x, t) is a temporal function, the determination of the presence
of chaotic behaviors in the associated system depends on more than the existence of mul-
tiple bifurcations on the probability density curve, i.e. , it is needed to construct a phase
space with P (z, t) and P (x, t+7) as coordinates. The occurrence of Cantor set image
therein for certain parameter magnitudes serves as the important forerunner of such be-
haviors.

H. A STOCHASTIC CLIMATIC SYSTEM

Saltzman ( 1978 ) proposed an atmosphere-sea-ice cover incorporated climatic mod-
el, as illustrated in Fig. 1.

v

w The model takes the form
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Fig. 1. Schematic of Saltzman simple climate parameters. Eq. (4) has periodic solu-

model. tions that constitute a stable limit cycle in
the 7" — @ phase space. The climatic mod-
el possesses a 1260-year period. It is evident from (4) that the system represents a self-
excited oscillation system,
Addition of the random terms f and g into the system leads to
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And with increased random disturbance. the limit evele in the original phase space gets

(5)
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disintegrated little by little and the periodic solution brings about a wide-band frequency
spectrum.

If
12
=g 6
7 2]
is satisfied, then (5) develops into the one-dimensional form ( Saltzman, 1988 )
90— a0 — Bo* + R, Q)

where A = (¢, — 9.9, ;B = ¢,0°¢%, > s R=random term; # =SST fluctuation. (7) is
the Langevin equation of #'. By denoting x=§', ( 7) is rewritten as

EzA:c—B:ﬁ-i—R. €))
When the rhs random term meets
(R@),RU)) = %80 — ), (9

theoretically, (8) has the principal equation ( F-P expression ) for its related probabili-
ty density in the form

aplx,t) _

) s e &
Y —£[(AJ—BJ yp(x,)]+ —

2 EP(IJ) ’ (10)
where p{(x, ¢) is the function of probability density distribution.
Eq. (10) has a steady state solution of the form
plx) = N lexp[— 2U(x) /€], an

where N~ !is a normalized constant, and

Ulz) =— '[I (Ar — Bx®)dx. a2)

Next, the time-dependent solution of (10) ( see Hu, 1985 ) is given as

_1 e y@F| (= VA
plzt) = £ L Em)exp{ O Y exp| =74 av, a3)
where y(z) has a form

7 1 - —_ 1

Jyo mdy =i Loy t, = 3 lnE, (14)
> 1
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and o(t) = (Ay? — By®) J.yo Ay — By’)sdy' 1s)

IV. CALCULATIONS

Figs. 2, 3, 4 and 5 are based on numerical calculations through (13), (14) and
(15), with plot (a) denoting the probability density curve under the conditions of given
parameter magnitudes and plot (b) the Cantor set in the phase space of p(x, ) and p
(xy t+71).

It is seen from these figures that with the values given, p (x, ¢) shows multiple bi-
furcations and the Cantor set is displayed in the defined phase space, suggesting the oc-
currence of chaotic behaviors shown by the random system (7) for the parameter magni-
tudes.

V. CONCLUDING REMARKS AND DISCUSSION

a. Starting from the Saltzman’s air-sea random model, the original model is con-
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Fig. 4. Probability density curve p(x,t) where Fig.5.  As in Fig. 3 but for
A=4.0X10"Ms7!, P(Iz't)_P(Iz't+T).

B=8.0X10"% 'k ¢,
e=6.0X10""%and r=—1.5.

verted to the Langevin equation of SST fluctuation & with the condition 7’ = %ﬁ' . This
2
/
condition when substituted into (13), gives (L—Z = 0, indicating that the problem ad-
dressed in this study is concerned with the chaotic state of random output related to SST
fluctuation &', when 7 is steady. Results show that with A=4.0X 10""s 'and B=
8. 0 X 107 % "'k~ ?available, the stochastic effect e= 6.0 X 10 "or e= 6.0 X 107" causes
multiple bifurcations on the curve of probability density and the p(x,t) — p(x,t + 7)
phase space displays Cantor set, thereby meeting the needs of chaotic output from the
random model developed by Kapitaniak. Under the action of external random force &
will exhibit chaotic behaviors.
b. For (5) we employ the magnitudes of the coefficients as

@ = 4X10 %k s, @ =5X10"s1, ¢ =4 X 107%ks !,

g, =2X10"", ¢, =5X107s !,
with ¢ and ¢, as the comprehensive parameters in association with the release of latent
heat flux; ¢, and ¢, as the coefficient of ice-limit thermal inertia; ¢, as the quantity of
nonlinear vigor.
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Change is made of the original parameters for calculation as follows:
@ =4X10"%k s, ¢g=4XxX10"s""1, ¢, =4 X 10 °ks™!,
¢, =8 X 10 "s™!, ¢, =8 X 10 % .
Such change made is of great significance and makes the calculation useful. The ¢,-dom-
inated positive feedback is reduced; @-controlled ice thermal dissipative effect is in-
creased; ice inertia is intensified so that the sea inertia is made closer to reality. Of
course, ¢ is strengthened to make the nonlinear effect salient.

c. Research also indicates that with increased nonlinear effect, very weak random
disturbance will cause the Cantor structure in the p(x,¢) — p(z,t + ) phase space in re-
lation to the function of probability density distribution, thus leading to the chaotic out-
put from the stochastic system, an aspect that deserves emphasis. For the original equa-
tion (4), although containing a 1260-year periodic solution, it is able to make the fre-
quency band widened under the influence of random force, an aspect that needs to be
further replenished. Beyond that, attention should be drawn to the salient impact of the
nonlinear effect. And the & evolution ( hence 7 ) is marked by aperiodicity.

d. The criterion of SST anomaly in current use is based mainly on E1 Nino phenom-
non. As SST fluctuation exceeds 1°C the anomaly will occur. £ == 1.5 ( implying SST
fluctuation # =+ 1. 5°C addressed in this paper ) actually takes into account the influ-
ence of the anomaly, suggesting that the obtained results represent the chaotic output
with SST anomaly available.
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