[1]
|
BREWER A W. Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere[J]. Quarterly Journal of the Royal Meteorological Society, 1949, 75(326): 351–363, https://doi.org/10.1002/qj.49707532603 |
[2]
|
FRITTS D C. Gravity wave saturation in the middle atmosphere: A review of theory and observations[J]. Reviews of Geophysics, 1984, 22(3): 275–308, https://doi.org/10.1029/RG022i003p00275 |
[3]
|
WIRTH V. Diabatic heating in an axisymmetric cut-off cyclone and related stratosphere-troposphere exchange[J]. Quarterly Journal of the Royal Meteorological Society, 1995, 121(521): 127–147, https://doi.org/10.1002/qj.49712152107 |
[4]
|
TIAN W, HUANG J, ZHANG J, et al. Role of stratospheric processes in climate change: Advances and challenges[J]. Advances in Atmospheric Sciences, 2023, 40(8): 1379–1400, https://doi.org/10.1007/s00376-023-2341-1 |
[5]
|
ZHANG J, JI Q, SHENG Z, et al. Observation based climatology Martian atmospheric waves perturbation datasets[J]. Scientific Data, 2023, 10(1): 4, https://doi.org/10.1038/s41597-022-01909-y |
[6]
|
HE Y, ZHU X, SHENG Z, et al. Resonant waves play an important role in the increasing heat waves in Northern Hemisphere mid-latitudes under global warming[J]. Geophysical Research Letters, 2023, 50(14): e2023GL104839, https://doi.org/10.1029/2023GL104839 |
[7]
|
HE Y, ZHU X, SHENG Z, et al. Identification of stratospheric disturbance information in China based on the round-trip intelligent sounding system[J]. Atmospheric Chemistry and Physics, 2024, 24(6): 3839–3856, https://doi.org/10.5194/acp-24-3839-2024 |
[8]
|
CHEN B, SHENG Z, HE Y. High-precision and fast prediction of regional wind fields in near space using neural-network approximation of operators[J]. Geophysical Research Letters, 2023, 50(22): e2023GL106115, https://doi.org/10.1029/2023GL106115 |
[9]
|
WANG W, HONG J, SHANGGUAN M, et al. Zonally asymmetric influences of the quasi-biennial oscillation on stratospheric ozone[J]. Atmospheric Chemistry and Physics, 2022, 22(20): 13, 695–13, 711, https://doi.org/10.5194/acp-22-13695-2022 |
[10]
|
HE Y, ZHU X, SHENG Z, et al. Observations of inertia gravity waves in the Western Pacific and their characteristic in the 2015/2016 quasi-biennial oscillation disruption[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(22): e2022JD037208, https://doi.org/10.1029/2022JD037208 |
[11]
|
FOVELL R, DURRAN D, HOLTON J R. Numerical simulations of convectively generated stratospheric gravity waves[J]. Journal of Atmospheric Sciences, 1992, 49(16): 1427–1442, https://doi.org/10.1175/1520-0469(1992)049<1427:NSOCGS>2.0.CO;2 doi: |
[12]
|
CLARK T L, HAUF T, KUETTNER J P. Convectively forced internal gravity waves: Results from two-dimensional numerical experiments[J]. Quarterly Journal of the Royal Meteorological Society, 1986, 112(474): 899–925, https://doi.org/10.1002/qj.49711247402 |
[13]
|
SALBY M L, GARCIA R R. Transient response to localized episodic heating in the Tropics, Part Ⅰ: Excitation and short-time near-field behavior[J]. Journal of Atmospheric Sciences, 1987, 44(2): 458–498, https://doi.org/10.1175/1520-0469(1987)044<0458:TRTLEH>2.0.CO;2 doi: |
[14]
|
CAIRO F, BUONTEMPO C, MACKENZIE A R, et al. Morphology of the tropopause layer and lower stratosphere above a tropical cyclone: a case study on cyclone Davina (1999)[J]. Atmospheric Chemistry and Physics, 2008, 8(13): 3411–3426, https://doi.org/10.5194/acp-8-3411-2008 |
[15]
|
DHAKA S K, TAKAHASHI M, SHIBAGAKI Y, et al. Gravity wave generation in the lower stratosphere due to passage of the typhoon 9426 (Orchid) observed by the MU radar at Shigaraki (34.85°N, 136.10°E)[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D19): 4595, https://doi.org/10.1029/2003JD003489 |
[16]
|
SATO K. Small-scale wind disturbances observed by the MU Radar during the passage of Typhoon Kelly[J]. Journal of Atmospheric Sciences, 1993, 50(4): 518–537, https://doi.org/10.1175/1520-0469(1993)050<0518:SSWDOB>2.0.CO;2 doi: |
[17]
|
KIM S-Y, CHUN H-Y, WU D L. A study on stratospheric gravity waves generated by Typhoon Ewiniar: Numerical simulations and satellite observations[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D22): D22104, https://doi.org/10.1029/2009JD011971 |
[18]
|
CHANE-MING F, ROFF G, ROBERT L, et al. Gravity wave characteristics over Tromelin Island during the passage of cyclone Hudah[J]. Geophysical Research Letters, 2002, 29(6): 1094, https://doi.org/10.1029/2001GL013286 |
[19]
|
PFISTER L, CHAN K R, BUI T P, et al. Gravity waves generated by a tropical cyclone during the STEP tropical field program: A case study[J]. Journal of Geophysical Research: Atmospheres, 1993, 98(D5): 8611–8638, https://doi.org/10.1029/92JD01679 |
[20]
|
KIM S-Y, CHUN H-Y, BAIK J-J. A numerical study of gravity waves induced by convection associated with Typhoon Rusa[J]. Geophysical Research Letters, 2005, 32(24): L2486, https://doi.org/10.1029/2005GL024662 |
[21]
|
KIM S-Y, CHUN H-Y, BAIK J-J. Sensitivity of typhoon-induced gravity waves to cumulus parameterizations[J]. Geophysical Research Letters, 2007, 34(15): L15814, https://doi.org/10.1029/2007GL030592 |
[22]
|
KUESTER M A, ALEXANDER M J, RAY E A. A model study of gravity waves over Hurricane Humberto (2001)[J]. Journal of the Atmospheric Sciences, 2008, 65(10): 3231–3246, https://doi.org/10.1175/2008JAS2372.1 |
[23]
|
EMANUEL K. Increasing destructiveness of tropical cyclones over the past 30 years[J]. Nature, 2005, 436 (7051): 686–688, https://doi.org/10.1038/nature03906 |
[24]
|
MERRILL R T. Characteristics of the upper-tropospheric environmental flow around hurricanes[J]. Journal of Atmospheric Sciences, 1988, 45(11): 1665–1677, https://doi.org/10.1175/1520-0469(1988)045<1665:COTUTE>2.0.CO;2 doi: |
[25]
|
CHANG S, LI Y, SHI C, et al. Combined effects of the ENSO and the QBO on the ozone valley over the Tibetan Plateau[J]. Remote Sensing, 2022, 14(19): 4935, https://doi.org/10.3390/rs14194935 |
[26]
|
LI Y, XU F, WAN L, et al. Effect of ENSO on the ozone valley over the Tibetan Plateau based on the WACCM4 model[J]. Remote Sensing, 2023, 15(2): 525, https://doi.org/10.3390/rs15020525 |
[27]
|
FENG W, PLANE J M C, CHIPPERFIELD M P, et al. Potential stratospheric ozone depletion due to Iodine injection from small satellites[J]. Geophysical Research Letters, 2023, 50(7): e2022GL102300, https://doi.org/10.1029/2022GL102300 |
[28]
|
LECLAIR DE BELLEVUE J, BARAY J L, BALDY S, et al. Simulations of stratospheric to tropospheric transport during the tropical cyclone Marlene event[J]. Atmospheric Environment, 2007, 41(31): 6510–6526, https://doi.org/10.1016/j.atmosenv.2007.04.040 |
[29]
|
FADNAVIS S, BEIG G, BUCHUNDE P, et al. Vertical transport of ozone and CO during super cyclones in the Bay of Bengal as detected by tropospheric emission spectrometer[J]. Environmental Science and Pollution Research, 2011, 18(2): 301–315, https://doi.org/10.1007/s11356-010-0374-3 |
[30]
|
EMANUEL K A. An air-sea interaction theory for tropical cyclones, Part Ⅰ: Steady-state maintenance[J]. Journal of Atmospheric Sciences, 1986, 43(6): 585–605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2 doi: |
[31]
|
DAS S S, VENKAT RATNAM M, UMA K N, et al. Stratospheric intrusion into the troposphere during the tropical cyclone Nilam (2012)[J]. Quarterly Journal of the Royal Meteorological Society, 2016, 142(698): 2168–2179, https://doi.org/10.1002/qj.2810 |
[32]
|
ROUX F, CLARK H, WANG K Y, et al. The influence of typhoons on atmospheric composition deduced from IAGOS measurements over Taipei[J]. Atmospheric Chemistry and Physics, 2020, 20(6): 3945–3963, https://doi.org/10.5194/acp-20-3945-2020 |
[33]
|
ROSSOW W B, PEARL C. 22-Year survey of tropical convection penetrating into the lower stratosphere[J]. Geophysical Research Letters, 2007, 34(4): L04803, https://doi.org/10.1029/2006GL028635 |
[34]
|
RAY E A, ROSENLOF K H. Hydration of the upper troposphere by tropical cyclones[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D12): D12311, https://doi.org/10.1029/2006JD008009 |
[35]
|
ROMPS D M, KUANG Z. Overshooting convection in tropical cyclones[J]. Geophysical Research Letters, 2009, 36(9): L09804, https://doi.org/10.1029/2009GL037396 |
[36]
|
ZHAN R, WANG Y. Contribution of tropical cyclones to stratosphere-troposphere exchange over the northwest Pacific: Estimation based on AIRS satellite retrievals and ERA-Interim data[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D12): D12112, https://doi.org/10.1029/2012JD017494 |
[37]
|
WANG J, WAN L, CHANG S, et al. Impact of a gravity wave process on the upper stratospheric ozone valley on the Qinghai-Tibetan Plateau[J]. Theoretical and Applied Climatology, 2024, 155(3): 2439–2451, https://doi.org/10.1007/s00704-023-04783-9 |
[38]
|
CHEN D, CHEN Z, LÜ D. Simulation of the stratospheric gravity waves generated by the Typhoon Matsa in 2005[J]. Science China Earth Sciences, 2012, 55(4): 602–610, https://doi.org/10.1007/s11430-011-4303-1 |
[39]
|
MIYAZAKI K, WATANABE S, KAWATANI Y, et al. Transport and mixing in the extratropical tropopause region in a high-vertical-resolution GCM, Part Ⅰ: Potential vorticity and heat budget analysis[J]. Journal of the Atmospheric Sciences, 2010, 67(5): 1293–1314, https://doi.org/https://doi.org/10.1175/2009JAS3221.1 |
[40]
|
WU X, QIE X, YUAN T. Regional distribution and diurnal variation of deep convective systems over the Asian monsoon region[J]. Science China Earth Sciences, 2013, 56(5): 843–854, https://doi.org/10.1007/s11430-012-4551-8 |
[41]
|
HONG S-Y, LIM J-O J. The WRF Single-Moment 6-Class Microphysics Scheme (WSM6)[J]. Asia-Pacific Journal of Atmospheric Sciences, 2006, 42(2): 129–151. |
[42]
|
IACONO M J, DELAMERE J S, MLAWER E J, et al. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D13): D13103, https://doi.org/10.1029/2008JD009944 |
[43]
|
HONG S-Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134(9): 2318–2341, https://doi.org/10.1175/MWR3199.1 |
[44]
|
MUKUL TEWARI N, TEWARI M, CHEN F, et al. Implementation and verification of the unified NOAH land surface model in the WRF model (Formerly Paper Number 17.5)[C]// Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction. Seattle: American Meteorological Society, 2004. |
[45]
|
ZHANG D, ANTHES R A. A high-resolution model of the planetary boundary layer-Sensitivity tests and comparisons with SESAME-79 data[J]. Journal of Applied Meteorology and Climatology, 1982, 21(11): 1594–1609, https://doi.org/10.1175/1520-0450(1982)021<1594:AHRMOT>2.0.CO;2 doi: |
[46]
|
WANG Y, HUANG Y, LI H, et al. Analysis of stratospheric gravity wave parameters based on COSMIC observation [J]. Chinese Journal of Space Science, 2019, 39(3): 326–341, https://doi.org/10.11728/cjss2019.03.326, in Chinese with English abstract. |
[47]
|
CHANG S, HE H, HUANG D. The effects of gravity waves on ozone over the Tibetan Plateau[J]. Atmospheric Research, 2024, 299: 107204, https://doi.org/10.1016/j.atmosres.2023.107204 |
[48]
|
HOFFMANN L, ALEXANDER M J. Occurrence frequency of convective gravity waves during the North American thunderstorm season[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D20): D20111, https://doi.org/10.1029/2010JD014401 |
[49]
|
HONG J, YAO Z, HAN Z, et al. Numerical simulations and ARIS observations of stratospheric gravity waves induced by the Typhoon Muifa[J]. Chinese Journal of Geophysics, 2015, 58(7): 2283–2293, https://doi.org/10.6038/cjg20150707, in Chinese with English abstract. |
[50]
|
BERES J H, ALEXANDER M J, HOLTON J R. Effects of tropospheric wind shear on the spectrum of convectively generated gravity waves[J]. Journal of the Atmospheric Sciences, 2002, 59(11): 1805–1824, https://doi.org/10.1175/1520-0469(2002)059<1805:EOTWSO>2.0.CO;2 doi: |
[51]
|
ZHAO K, BAO Y, HUANG J, et al. A modeling study of the impact of stratospheric intrusion on Ozone enhancement in the lower troposphere in South China[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(1): 75–86, https://doi.org/10.3878/j.issn.1006-9895.1801.17224, in Chinese with English abstract. |
[52]
|
ZHANG J, ZHANG C, ZHAO S, et al. Impacts of the Arctic stratospheric polar vortex changes on the frontogenesis over the northern middle latitudes during winter[J]. Atmospheric Research, 2023, 289: 106751, https://doi.org/10.1016/j.atmosres.2023.106751 |
[53]
|
CHO J Y N, NEWELL R E, BUI T P, et al. Observations of convective and dynamical instabilities in tropopause folds and their contribution to stratosphere-troposphere exchange[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D17): 21, 549–21, 568, https://doi.org/10.1029/1999JD900430 |
[54]
|
KAWATANI Y, TSUJI K, TAKAHASHI M. Zonally nonuniform distribution of equatorial gravity waves in an atmospheric general circulation model[J]. Geophysical Research Letters, 2005, 32(23): L23815, https://doi.org/https://doi.org/10.1029/2005GL024068 |
[55]
|
SHAPIRO M A. Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere[J]. Journal of Atmospheric Sciences, 1980, 37(5): 994–1004, https://doi.org/10.1175/1520-0469(1980)037<0994:TMWTFA>2.0.CO;2 doi: |
[56]
|
CHANG S, SHENG Z, ZHU Y, et al. Response of Ozone to a gravity wave process in the UTLS Region over the Tibetan Plateau[J]. Frontiers in Earth Science, 2020, 8: 289, https://doi.org/10.3389/feart.2020.00289 |
[57]
|
CHEN D, CHEN Z, LÜ D. Spatiotemporal spectrum and momentum flux of the stratospheric gravity waves generated by a typhoon.[J]. Science China: Earth Science, 2013, 56: 54–62, https://doi.org/10.1007/s11430-012-4502-4 |