[1] |
LEE B D, FARLEY R D, HJELMFELT M R. A numerical case study of convection initiation along colliding convergence boundaries in northeast Colorado[J]. J Atmos Sci, 1991, 48(21): 2350-2366, https://doi.org/10.1175/1520-0469(1991)048 < 2350:ANCSOC > 2.0.CO; 2. doi: 10.1175/1520-0469(1991)048<2350:ANCSOC>2.0.CO;2 |
[2] |
WILSON J W, FOOTE G B, CṘOOK N A, et al. The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms: A case study[J]. Mon Wea Rev, 1992, 120(9): 1785-1815, https://doi.org/10.1175/1520-0493(1992)120 < 1785:TROBLC > 2.0.CO; 2. doi: 10.1175/1520-0493(1992)120<1785:TROBLC>2.0.CO;2 |
[3] |
KINGSMILL D E. Convection initiation associated with a sea-breeze front, a gust front, and their collision[J]. Mon Wea Rev, 1995, 123(10): 2913-2933, https://doi.org/10.1175/1520-0493(1995)123 < 2913:CIAWAS > 2.0.CO; 2. doi: 10.1175/1520-0493(1995)123<2913:CIAWAS>2.0.CO;2 |
[4] |
WAKIMOTO R M, MURPHEY H V. Analysis of a dryline during IHOP: Implications for convection initiation[J]. Mon Wea Rev, 2009, 137(3): 912-936, https://doi.org/10.1175/2008MWR2584.1. |
[5] |
BENNETT L J, BROWNING K A, BLYTH A M, et al. A review of the initiation of precipitating convection in the United Kingdom[J]. Q J R Meteorol Soc, 2006, 132(617): 1001-1020, https://doi.org/10.1256/qj.05.54. |
[6] |
HANE C E, ZIEGLER C L, BLUESTEIN H B. Investigation of the dryline and convective storms initiated along the dryline: Field experiments during COPS-91[J]. Bull Am Meteorol Soc, 1993, 74(11): 2133-2145, https://doi.org/10.1175/1520-0477(1993)074 < 2133:IOTDAC > 2.0. CO; 2. doi: 10.1175/1520-0477(1993)074<2133:IOTDAC>2.0.CO;2 |
[7] |
OLSON D A, JUNKER N W, KORTY B. Evaluation of 33 years of quantitative precipitation forecasting at the NMC [J]. Wea Forecasting, 1995, 10(3): 498-511, https://doi.org/10.1175/1520-0434(1995)010 < 0498:EOYOQP > 2.0.CO; 2. doi: 10.1175/1520-0434(1995)010<0498:EOYOQP>2.0.CO;2 |
[8] |
WECKWERTH T M, PARSONS D B. A review of convection initiation and motivation for IHOP_2002[J]. Mon Wea Rev, 2006, 134(1): 5-22, https://doi.org/10.1175/MWR3067.1. |
[9] |
ATKINS N T, WAKIMOTO R M, ZIEGLER C L. Observations of the finescale structure of a dryline during VORTEX 95[J]. Mon Wea Rev, 1998, 126(3): 525-550, https://doi.org/10.1175/1520-0493(1998)126 < 0525: OOTFSO > 2.0.CO; 2. doi: 10.1175/1520-0493(1998)126<0525:OOTFSO>2.0.CO;2 |
[10] |
ULANSKI S L, GARSTANG M. The role of surface divergence and vorticity in the life cycle of convective rainfall, Part Ⅰ: Observation and analysis[J]. J Atmos Sci, 1978, 35(6): 1047-1062, https://doi.org/10.1175/1520-0469(1978)035 < 1047:TROSDA > 2.0.CO; 2. doi: 10.1175/1520-0469(1978)035<1047:TROSDA>2.0.CO;2 |
[11] |
WILSON J W, SCHREIBER W E. Initiation of convective storms at radar-observed boundary-layer convergence lines[J]. Mon Wea Rev, 1986, 114(12): 2516-2536, https://doi.org/10.1175/1520-0493(1986)114 < 2516: IOCSAR > 2.0.CO; 2. doi: 10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2 |
[12] |
WILSON J W, ROBERTS R D. Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective[J]. Mon Wea Rev, 2006, 134(1): 23-47, https://doi.org/10.1175/MWR3069.1. |
[13] |
BLUESTEIN H B, MCCAUL E W, BYRD G P, et al. An observational study of splitting convective clouds[J]. Mon Wea Rev, 1990, 118(19906): 1359-1370, https://doi.org/10.1175/1520-0493(1990)118 < 1359: AOSOSC > 2.0. CO; 2. doi: 10.1175/1520-0493(1990)118<1359:AOSOSC>2.0.CO;2 |
[14] |
MARQUIS J N, RICHARDSON Y P, WURMAN J M. Kinematic observations of misocyclones along boundaries during IHOP[J]. Mon Wea Rev, 2007, 135(5): 1749-1768, https://doi.org/10.1175/MWR3367.1. |
[15] |
XUE M, MARTIN W J. A high-resolution modeling study of the 24 May 2002 dryline case during IHOP, Part Ⅰ: Numerical simulation and general evolution of the dryline and convection[J]. Mon Wea Rev, 2006, 134(1): 149-171, https://doi.org/10.1175/MWR3071.1. |
[16] |
MARKOWSKI P, HANNON C, RASMUSSEN E. Observations of convection initiation "failure" from the 12 June 2002 IHOP deployment[J]. Mon Wea Rev, 2006, 134(1): 375-405, https://doi.org/10.1175/MWR3059.1. |
[17] |
WECKWERTH T M. The effect of small-scale moisture variability on thunderstorm initiation[J]. Mon Wea Rev, 2000, 128(12): 4017-4030, https://doi.org/10.1175/1520-0493(2000)129 < 4017:TEOSSM > 2.0.CO; 2. doi: 10.1175/1520-0493(2000)129<4017:TEOSSM>2.0.CO;2 |
[18] |
XUE M, MARTIN W J. A high-resolution modeling study of the 24 May 2002 dryline case during IHOP, Part Ⅱ: Horizontal convective rolls and convective initiation [J]. Mon Wea Rev, 2006, 134(1): 172-191, https://doi.org/10.1175/MWR3072.1. |
[19] |
FOVELL R G. Convective initiation ahead of the seabreeze front[J]. Mon Wea Rev, 2005, 133(1), 264-278, https://doi.org/10.1175/MWR-2852.1. |
[20] |
LEE B D, WILHELMSON R B. The numerical simulation of non-supercell tornadogenesis, Part Ⅰ: Initiation and evolution of pretornadic misocyclone circulations along a dry outflow boundary[J]. J Atmos Sci, 1997, 54(1): 32-60, https://doi.org/10.1175/1520-0469(1997)054 < 0032:TNSONS > 2.0.CO; 2. doi: 10.1175/1520-0469(1997)054<0032:TNSONS>2.0.CO;2 |
[21] |
BUBAN M S, ZIEGLER C L. The formation of small-scale atmospheric vortices via horizontal shearing instability[J]. J Atmos Sci. 2016, 73(5): 2061-2084, https://doi.org/10.1175/JAS-D-14-0355.1. |
[22] |
DROEGEMEIER K K, WILHELMSON R B. Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows, Part Ⅰ: Control simulation and low-level moisture variations[J]. J Atmos Sci, 1985, 42: 2381-2403, https://doi.org/10.1175/1520-0469(1985)042 < 2381:TDNMOC > 2.0.CO; 2. doi: 10.1175/1520-0469(1985)042<2381:TDNMOC>2.0.CO;2 |
[23] |
DROEGEMEIER K K, WILHELMSON R B. Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows, Part Ⅱ: variations in vertical wind shear[J]. J Atmos Sci 1985, 42: 2404-2414, https://doi.org/10.1175/1520-0469(1985)042 < 2404: TDNMOC > 2.0.CO; 2. doi: 10.1175/1520-0469(1985)042<2404:TDNMOC>2.0.CO;2 |
[24] |
BLUESTEIN H B, WEISMAN M L. The interaction of numerically simulated supercells initiated along lines[J]. Mon Wea Rev, 2000, 128(9): 3128-3149, https://doi.org/10.1175/1520-0493(2000)128 < 3128:TIONSS > 2.0.CO; 2. doi: 10.1175/1520-0493(2000)128<3128:TIONSS>2.0.CO;2 |
[25] |
KINGSMILL D E. Convection initiation associated with a sea-breeze front, a gust front, and their collision[J]. Mon Wea Rev, 1995, 123(10): 2913-2933, https://doi.org/10.1175/1520-0493(1995)123 < 2913:CIAWAS > 2.0.CO; 2. doi: 10.1175/1520-0493(1995)123<2913:CIAWAS>2.0.CO;2 |
[26] |
XING Shu-qiang, LI Xiao-fan. Diurnal variation of global precipitation: an analysis of CMORPH data[J]. J Trop Meteor, 2019, 25(1): 45-53, https://doi.org/10.16555/j.1006-8775.2019.01.005. |
[27] |
HOLT T R, NIYOGI D, CHEN F, et al. Effect of land-atmosphere interactions on the IHOP 24-25 May 2002 convection case[J]. Mon Wea Rev, 2006, 134(1): 113-133, https://doi.org/10.1175/MWR3057.1. |
[28] |
MENG W, ZHANG Y, LI J, et al. Sensitivity of mesoscale convective systems and associated heavy rainfall to soil moisture over south China[J]. J Trop Meteor, 2017, 23 (1): 91-102, https://doi.org/10.16555/j. 1006-8775.2017.01.009. doi: 10.16555/j.1006-8775.2017.01.009 |
[29] |
LIU L, RAN L, SUN X. Analysis of the structure and propagation of a simulated squall line on 14 June 2009 [J]. Adv Atmos Sci, 2015, 32(8): 1049, https://doi.org/10.1007/s00376-014-4100-9. |
[30] |
MCCARTHY J, KOCH S E. The evolution of an Oklahoma dryline, Part Ⅰ: A meso-and subsynoptic-scale analysis[J]. J Atmos Sci, 1982, 39(2): 225-236, https://doi.org/10.1175/1520-0469(1982)039 < 0225: TEOAOD > 2.0.CO; 2. doi: 10.1175/1520-0469(1982)039<0225:TEOAOD>2.0.CO;2 |
[31] |
ZIEGLER, C L, LEE T J, PIELKE R A. Convective initiation at the dryline: A modeling study[J]. Mon Wea Rev, 1997, 125(6): 1001-1026, https://doi.org/10.1175/1520-0493(1997)125 < 1001:CIATDA > 2.0.CO; 2. doi: 10.1175/1520-0493(1997)125<1001:CIATDA>2.0.CO;2 |
[32] |
MURPHEY H V, WAKIMOTO R M, FLAMANT C, et al. Dryline on 19 June 2002 during IHOP, Part Ⅰ: Airborne doppler and LEANDRE Ⅱ analyses of the thin line structure and convection initiation[J]. Mon Wea Rev, 2006, 134(1): 406-430, https://doi.org/10.1175/MWR3063.1. |
[33] |
SKAMAROCK W C, KLEMP J B, DUDHIA J, et al.'A Description of the Advanced Research WRF Version 3.' NCAR Technical Note NCAR/TN-475+STR[M]. 2008. 113pp. NCAR: Boulder, Colorado, USA. |
[34] |
MORRISON H, THOMPSON G, TATARSKII V. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes[J]. Mon Wea Rev, 2009, 137(3): 991-1007, https://doi.org/10.1175/2008MWR2556.1. |
[35] |
PLEIM J E. A combined local and nonlocal closure model for the atmospheric boundary layer, Part Ⅰ: Model description and testing[J]. J Appl Meteorol Climatol, 2007, 46(9): 1383-1395, https://doi.org/10.1175/JAM2539.1. |
[36] |
SHEN Y, ZHAO P, PAN Y, et al. A high spatiotemporal gauge -satellite merged precipitation analysis over China [J]. J Geophys Res Atmos, 2014, 119(6): 3063-3075, https://doi.org/10.1002/2013JD020686. |
[37] |
FJØRTOFT R. Application of Integral Theorems in Deriving Criteria of Stability for Laminar Flows and for the Baroclinic Circular Vortex[M]. Oalo: Grøndahl & søns boktr, 1950. |
[38] |
MILES J W, HOWARD L N. Note on a heterogeneous shear flow[J]. J Fluid Mech, 1964, 20, 331-336, https://doi.org/10.1017/S0022112064001252. |