[1] SUN W, MU X, SONG X, et al. Changes in extreme temperature and precipitation events in the Loess Plateau (China) during 1960-2013 under global warming[J]. Atmos Res, 2016, 168: 33-48, https://doi.org/10.1016/j. atmosres.2015.09.001. doi: 10.1016/j.atmosres.2015.09.001
[2] LEESON A A, EASTOE E, FETTWEIS X. Extreme temperature events on Greenland in observations and the MAR regional climate model[J]. The Cryosphere, 2018, 12 (3): 1091-1102, https://doi.org/10.5194/tc-12-1091-2018.
[3] SHERIDAN S C, LEE C C. Temporal trends in absolute and relative extreme temperature events across North America[J]. J Geophys Res: Atmos, 2018, 123(21): 11889-11898, https://doi.org/10.1029/2018jd029150.
[4] CHEN H-Y, YU H, YE G-J, et al. Return period and the trend of extreme disastrous rainstorm events in Zhejiang Province[J]. J Trop Meteor, 2019, 25(2): 192-200, https://doi.org/10.16555/j.1006-8775.2019.02.006.
[5] LIU J, ZHONG W, LIU S, et al. Allocation difference analyses of water substances during typhoon landing processes[J]. J Trop Meteor, 2018, 24(3): 300-313, https://doi.org/1006-8775(2018)03-0300-14. https://doi.org/1006-8775(2018)03-0300-14
[6] YUE C, CAO Y, GU W, et al. Study on the genesis of asymmetrical distribution characteristics of precipitation associated with the Typhoon Haitang (2005) from the view of atmospheric factor[J]. J Trop Meteor, 2016, 22(3): 265-276, https://doi.org/10.16555/j.1006-8775.2016.03.001.
[7] CUI L-L, SHI J, DU H-Q, et al. Characteristics and trends of climatic extremes in China during 1959 - 2014[J]. J Trop Meteor, 2017, 23(4): 368-380, https://doi.org/10.16555/j.1006-8775.2017.04.003.
[8] WANG Y, ZABLON S W. Variability of diurnal temperature range in East Africa during 1921-2010[J]. J Trop Meteor, 2017, 23: 345-356, https://doi.org/10.16555/j.1006-8775.2017.04.001.
[9] TANG J, LI Q, WANG S, et al. Building Asian climate change scenario by multi-regional climate models ensemble, Part Ⅰ: surface air temperature[J]. International J Climatol, 2016, 36(13): 4241-4252, https://doi.org/10.1002/joc.4628.
[10] TANG J, NIU X, WANG S, et al. Statistical downscaling and dynamical downscaling of regional climate in China: Present climate evaluations and future climate projections [J]. J Geophys Res: Atmos, 2016, 121(5): 2110-2129, https://doi.org/10.1002/2015jd023977.
[11] HANNA E, CROPPER T E, HALL R J, et al. Greenland Blocking Index 1851-2015: a regional climate change signal[J]. International J Climatol, 2016, 36(15): 4847- 4861, https://doi.org/10.1002/joc.4673.
[12] HE B, HUANG X, MA M, et al. Analysis of flash flood disaster characteristics in China from 2011 to 2015[J]. Natural Hazards, 2017, 90(1): 407-420, https://doi.org/10.1007/s11069-017-3052-7.
[13] WANG L, LIAO Y, YANG L, et al. Emergency response to and preparedness for extreme weather events and environmental changes in China[J]. Asia Pac J Public Health, 2016, 28(2 Suppl): 59S-66S, https://doi.org/10.1177/1010539514549763.
[14] HERRERA-GRIMALDI P, GARCIA-MARIN A P, ESTEVEZ J. Multifractal analysis of diurnal temperature range over Southern Spain using validated datasets[J]. Chaos, 2019, 29(6): 063105, https://doi.org/10.1063/1.5089810.
[15] KARATASOU S, SANTAMOURIS M. Multifractal analysis of high-frequency temperature time series in the urban environment[J]. Climate, 2018, 6(2), https://doi.org/10.3390/cli6020050.
[16] MALI P. Multifractal detrended moving average analysis of global temperature records[J]. Journal of Statistical Mechanics: Theory and Experiment, 2016(1), 013201, https://doi.org/10.1088/1742-5468/2016/01/013201.
[17] KANTELHARDT J W, ZSCHIEGNER S A, KOSCIELNY-BUNDE E, et al. Multifractal detrended fluctuation analysis of nonstationary time series[J]. Physica A: Statistical Mechanics and its Applications, 2002, 316(1): 87-114, https://doi.org/10.1016/S0378-4371 (02)01383-3. doi: 10.1016/S0378-4371(02)01383-3
[18] KALAMARAS N, PHILIPPOPOULOS K, DELIGIORGI D, et al. Multifractal scaling properties of daily air temperature time series[J]. Chaos, Solitons & Fractals, 2017, 98: 38-43, https://doi.org/10.1016/j. chaos.2017.03.003. doi: 10.1016/j.chaos.2017.03.003
[19] PEDRON I T. Correlation and multifractality in climatological time series[J]. Journal of Physics: Conference Series, 2010, 246, https://doi.org/10.1088/1742-6596/246/1/012034.
[20] DU H, WU Z, ZONG S, et al. Assessing the characteristics of extreme precipitation over northeast China using the multifractal detrended fluctuation analysis[J]. J Geophys Res: Atmos, 2013, 118(12): 6165-6174, https://doi.org/10.1002/jgrd.50487.
[21] CABRERA-BRITO L, RODRIGUEZ G, GARCíA-WEIL L, et al. Fractal analysis of deep ocean current speed time series[J]. J Atmos Oceanic Technol, 2017, 34(4): 817-827, https://doi.org/10.1175/jtech-d-16-0098.1.
[22] ZHANG X, ZENG M, MENG Q. Asymmetric multiscale multifractal analysis of wind speed signals[J]. International Journal of Modern Physics C, 2017, 28(11), https://doi.org/10.1142/s0129183117501376.
[23] SUBHAKAR D, CHANDRASEKHAR E. Reservoir characterization using multifractal detrended fluctuation analysis of geophysical well-log data[J]. Physica A: Statistical Mechanics and its Applications, 2016, 445: 57-65, https://doi.org/10.1016/j.physa.2015.10.103.
[24] CHAKRABORTY B, VARDHAN Y V, HARIS K, et al. Multifractal detrended fluctuation analysis to compare coral bank and seafloor seepage area-related characterization along the central western continental margin of India[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(10): 1542-1546, https://doi.org/10.1109/lgrs.2016.2595628.
[25] LEE M, SONG J W, PARK J H, et al. Asymmetric multifractality in the U. S. stock indices using index-based model of A-MFDFA[J]. Chaos, Solitons & Fractals, 2017, 97: 28-38, https://doi.org/10.1016/j. chaos.2017.02.001. doi: 10.1016/j.chaos.2017.02.001
[26] ZENG W, YU Z, LI X. The influence of elevation, latitude and Arctic Oscillation on trends in temperature extremes over northeastern China, 1961-2011[J]. Meteorol Atmos Phys, 2017, 130(2): 191-209, https://doi.org/10.1007/s00703-017-0509-x.
[27] WU F, YANG X, SHEN Z. A three-stage hybrid model for regionalization, trends and sensitivity analyses of temperature anomalies in China from 1966 to 2015[J]. Atmos Res, 2018, 205: 80-92, https://doi.org/10.1016/j. atmosres.2018.02.008. doi: 10.1016/j.atmosres.2018.02.008
[28] LI E, MU X, ZHAO G, et al. Multifractal detrended fluctuation analysis of streamflow in the Yellow River Basin, China[J]. Water, 2015, 7(12): 1670-1686, https://doi.org/10.3390/w7041670.
[29] YUAN X, JI B, TIAN H, et al. Multiscaling analysis of monthly runoff series using improved MF-DFA approach [J]. Water Resources Management, 2014, 28(12): 3891-3903, https://doi.org/10.1007/s11269-014-0715-y.
[30] CLEVELAND R B, CLEVELAND W S, MCRAE J E, et al. STL: A seasonal-trend decomposition procedure based on Loess[J]. Journal of Official Statistics, 1990, 6(1): 3-73. http://ci.nii.ac.jp/naid/10014960531
[31] HE W-P, ZHAO S-S. Assessment of the quality of NCEP-2 and CFSR reanalysis daily temperature in China based on long-range correlation[J]. Clim Dyn, 2017, 50(1-2): 493-505, https://doi.org/10.1007/s00382-017-3622-0.
[32] ZHONG K, ZHENG F, WU H, et al. Dynamic changes in temperature extremes and their association with atmospheric circulation patterns in the Songhua River Basin, China[J]. Atmos Res, 2017, 190: 77-88, https://doi.org/10.1016/j.atmosres.2017.02.012.
[33] ZHU Y-L, WANG H-J, WANG T, et al. Extreme spring cold spells in North China during 1961-2014 and the evolving processes[J]. Atmos Oceanic Sci Lett, 2018, 11 (5): 432-437, https://doi.org/10.1080/16742834.2018.1514937.
[34] KALAMARAS N, TZANIS C G, DELIGIORGI D, et al. Distribution of air temperature multifractal characteristics over Greece[J]. Atmos, 2019, 10, https://doi.org/10.3390/atmos10020045.
[35] DURRE I, MENNE M J, GLEASON B E, et al. Comprehensive automated quality assurance of daily surface observations[J]. J Appl Meteorol Climatol, 2010, 49(8): 1615-1633, https://doi.org/10.1175/2010jamc2375.1.
[36] JIANG L, ZHANG J, LIU X, et al. Multi-fractal scaling comparison of the air temperature and the surface temperature over China[J]. Physica A: Statistical Mechanics and its Applications, 2016, 462: 783-792, https://doi.org/10.1016/j.physa.2016.06.048.
[37] DURSTENFELD R. Algorithm 235: Random permutation [J]. Communications of the ACM, 1964, 7(7): 420-420, https://doi.org/10.1145/364520.364540.
[38] LEMIRE D. Fast random integer generation in an interval [J]. ACM Transactions on Modeling and Computer Simulation, 2019, 29(1): 1-12, https://doi.org/10.1145/3230636.
[39] VAROTSOS C A, EFSTATHIOU M N. On the wrong inference of long-range correlations in climate data; the case of the solar and volcanic forcing over the Tropical Pacific[J]. Theoretical and Applied Climatology, 2016, 128(3-4): 761-767, https://doi.org/10.1007/s00704-016-1738-5.
[40] RAY R, DEY S, KHONDEKAR M H, et al. Multifractality and singularity in average temperature and dew point across India[J]. International Journal of Advanced Technology and Engineering Exploration, 2018, 5(43): 107-117, https://doi.org/10.19101/ijatee.2018.542018.
[41] ZHANG X, ZHANG G, QIU L, et al. A modified multifractal detrended fluctuation analysis (MFDFA) approach for multifractal analysis of precipitation in Dongting Lake Basin, China[J]. Water, 2019, 11(5), https://doi.org/10.3390/w11050891.
[42] YUN J, HA K-J, JO Y-H. Interdecadal changes in winter surface air temperature over East Asia and their possible causes[J]. Clim Dyn, 2017, 51(4): 1375-1390, https://doi.org/10.1007/s00382-017-3960-y.
[43] ATIKA R, FARIZA A, BARAKBAH A R. Forecast Rainfall Data Time Series Using Multi-Attribute Long Short-Term Memory[C]//2019 International Electronics Symposium (IES). 2019: 544-549, https://doi.org/10.1109/ELECSYM.2019.8901590.
[44] MCCOLL K A, HE Q, LU H, et al. Short-term and long-term surface soil moisture memory time scales are spatially anticorrelated at global scales[J]. J Hydrometeorol, 2019, 20(6): 1165-1182, https://doi.org/10.1175/jhm-d-18-0141.1.
[45] BEAULIEU C, KILLICK R, IRELAND D, et al. Considering long‐memory when testing for changepoints in surface temperature: A classification approach based on the time‐ varying spectrum[J]. Environmetrics, 2019, 31 (1), https://doi.org/10.1002/env.2568.
[46] RYPDAL K, RYPDAL M, FREDRIKSEN H-B. Spatiotemporal long-range persistence in Earth' s temperature field: analysis of stochastic-diffusive energy balance models[J]. J Climate, 2015, 28(21): 8379-8395, https://doi.org/10.1175/jcli-d-15-0183.1.
[47] GIL-ALANA L A. Maximum and minimum temperatures in the United States: Time trends and persistence[J]. Atmos Sci Lett, 2018, 19(4), https://doi.org/10.1002/asl.810.
[48] AMPILOVA N, SOLOVIEV I, KOTOPOULIS A, et al. On the Application of Multifractal Methods for the Analysis of Sea Surface Images Related to Sea State Determination[C]//Proceedings of 14th International Conference onCommunications, Electromagnetics and Medical Applications. 2019: 32-35.
[49] SHAO Z G, DITLEVSEN P D. Contrasting scaling properties of interglacial and glacial climates[J]. Nat Commun, 2016, 7: 10951, https://doi.org/10.1038/ncomms10951.
[50] CHEN R, WEN Z, LU R. Interdecadal change on the relationship between the mid-summer temperature in South China and atmospheric circulation and sea surface temperature[J]. Clim Dyn, 2017, 51(5-6): 2113-2126, https://doi.org/10.1007/s00382-017-4002-5.
[51] CHEN R, WEN Z, LU R. Evolution of the circulation anomalies and the quasi-biweekly oscillations associated with extreme heat events in southern China[J]. J Climate, 2016, 29(19): 6909-6921, https://doi.org/10.1175/jcli-d-16-0160.1.
[52] XUE F, FAN F. Anomalous western Pacific subtropical high during late summer in weak La Niña years: Contrast between 1981 and 2013[J]. Adv Atmos Sci, 2016, 33 (12): 1351-1360, https://doi.org/10.1007/s00376-016-5281-1.
[53] XU T, SHI Z, WANG H, et al. Nonstationary impact of the winter North Atlantic Oscillation and the response of mid-latitude Eurasian climate[J]. Theoretical and Applied Climatology, 2015, 124(1-2): 1-14, https://doi.org/10.1007/s00704-015-1396-z.
[54] XIE S-P, HAFNER J, TANIMOTO Y, et al. Bathymetric effect on the winter sea surface temperature and climate of the Yellow and East China Seas[J]. Geophys Res Lett, 2002, 29(24): 8181-8184, https://doi.org/10.1029/2002gl015884.
[55] CóRDOVA M, CéLLERI R, SHELLITO C J, et al. Nearsurface air temperature lapse rate over complex terrain in the southern ecuadorian andes: implications for temperature mapping[J]. Arctic, Antarctic, and Alpine Research, 2018, 48(4): 673-684, https://doi.org/10.1657/aaar0015-077.
[56] CHANG C-P, LU M-M. Intraseasonal predictability of Siberian High and East Asian winter monsoon and its interdecadal variability[J]. J Climate, 2012, 25(5): 1773-1778, https://doi.org/10.1175/jcli-d-11-00500.1.
[57] NI J, ZHANG X-S. Climate variability, ecological gradient and the Northeast China Transect (NECT)[J]. J Arid Environments, 2000, 46(3): 313-325, https://doi.org/10.1006/jare.2000.0667.
[58] HE J, ZHAO W, LI A, et al. The impact of the terrain effect on land surface temperature variation based on Landsat-8 observations in mountainous areas[J]. International Journal of Remote Sensing, 2018, 40(5-6): 1808-1827, https://doi.org/10.1080/01431161.2018.1466082.
[59] CHANGCHAO F, ZHIMING L, MOWEI W. A Study of Spatial and Temporal Distribution Law About Temperature and Precipitation in the Northeast of China [C]//Proceedings of SPIE-The International Society for Optical Engineering, 2019. https://www.researchgate.net/publication/252803851_A_study_of_spatial_and_temporal_distribution_law_about_temperature_and_precipitation_in_the_northeast_of_China
[60] SUN Y, HU T, ZHANG X, et al. Contribution of global warming and urbanization to changes in temperature extremes in eastern China[J]. Geophys Res Lett, 2019, 46 (20): 11426-11434, https://doi.org/10.1029/2019gl084281.
[61] LIU F, MURAYAMA Y. Evaluating bi-temporal dynamics and trend of urbanization-induced land cover temperature in Shanghai, China[J]. Abstr Int Cartogr Assoc, 2019, 1: 219, https://doi.org/10.5194/ica-abs-1-219-2019.
[62] CHUNG U, CHOI J, YUN J I. Urbanization effect on the observed change in mean monthly temperatures between 1951-1980 and 1971-2000 in Korea[J]. Climatic Change, 2004, 66(1): 127-136, https://doi.org/10.1023/B: CLIM.0000043136.58100.ce. doi: 10.1023/B:CLIM.0000043136.58100.ce
[63] OISHI Y. Urban heat island effects on moss gardens in Kyoto, Japan[J]. Landscape and Ecological Engineering, 2019, 15(2): 177-184, https://doi.org/10.1007/s11355-018-0356-z.
[64] MATSUMOTO J, FUJIBE F, TAKAHASHI H. Urban climate in the Tokyo metropolitan area in Japan[J]. Journal of Environmental Sciences, 2017, 59: 54-62, https://doi.org/10.1016/j.jes.2017.04.012.
[65] WANG J, YAN Z, QUAN X-W, et al. Urban warming in the 2013 summer heat wave in eastern China[J]. Climate Dynamics, 2016, 48(9-10): 3015-3033, https://doi.org/10.1007/s00382-016-3248-7.
[66] LUO M, LAU N-C. Heat Waves in Southern China: synoptic behavior, long-term change, and urbanization effects[J]. J Climate, 2017, 30(2): 703-720, https://doi.org/10.1175/jcli-d-16-0269.1.
[67] ZHONG S, QIAN Y, ZHAO C, et al. Urbanizationinduced urban heat island and aerosol effects on climate extremes in the Yangtze River Delta region of China[J]. Atmos Chem Phys, 2017, 17(8): 5439-5457, https://doi.org/10.5194/acp-17-5439-2017.
[68] YANG X, LEUNG L R, ZHAO N, et al. Contribution of urbanization to the increase of extreme heat events in an urban agglomeration in east China[J]. Geophys Res Lett, 2017, 44(13): 6940-6950, https://doi.org/10.1002/2017gl074084.