[1] ZHANG Q Y, TAO S Y. Influence of Asian mid-high latitude circulation on East Asian summer rainfall[J]. Acta Meteorol Sin, 1998, 56(2): 199-211(in Chinese), https://doi.org/10.11676/qxxb1998.019.
[2] CHEN H Y. The atmospheric circulation characteristics of the 1954 severe flood in Huaihe River Basin[J]. Acta Meteorol Sin, 1957, 28(1): 1-12(in Chinese), https://doi.org/10.11676/qxxb1957.001.
[3] DING Y H. Study of the Strong Heavy Rainfall in the Yangtse-Huaihe River Valley in 1991[M]. Beijing: China Meterological Press, 1993(in Chinese).
[4] ZHANG X L, TAO S Y, WEI J. An analysis on the basin wide catastrophic floods in the Yangtze River during the 20th Century[J]. Clim Environ Res, 2006, 11(6): 669-682 (in Chinese), https://doi.org/10.3878/j. issn. 1006-95 85.2006.06.01. doi: 10.3878/j.issn.1006-9585.2006.06.01
[5] TAO S Y, ZHANG Q Y, ZHANG S L. The great floods in Changjiang River valley in 1998[J]. Clim Environ Res, 1998, 3(4): 290-299(in Chinese), https://doi.org/10.3878/j. issn.1006-9585.1998. 04.01. doi: 10.3878/j.issn.1006-9585.1998.04.01
[6] LU R Y, HUANG R H. Influence of the stationary disturbance in the westerlies on the blocking highs over the northeastern Asian in summer[J]. Chin J Atmos Sci, 1999, 23(5): 533-542(in Chinese), https://doi.org/10.3878/j. issn.1006-9895.1999.05.03. doi: 10.3878/j.issn.1006-9895.1999.05.03
[7] LI S L, JI L R. Persistent anomaly in ural area in summer and its background circulation characteristics[J]. Acta Meteorol Sin, 2001, 59(3): 280-293(in Chinese), https://doi.org/10.3321/j.issn:0577-6619. 2001.03.003. doi: 10.3321/j.issn:0577-6619.2001.03.003
[8] LI S L, JI L R, NI Y Q. Study on the persistent anomaly of summertime circulation over Ural Mountains[J]. Chin Sci Bull, 2001, 46(9): 753-757(in Chinese), https://doi.org/10.3321/j.issn:0023-074X.2001.09.011.
[9] LI S L. Impact of northwest Atlantic SST anomalies on the circulation over the Ural Mountains during early winter[J]. J Meteor Soc Japan, 2004, 82(4): 971-988, https://doi.org/10.2151/jmsj.2004.971.
[10] PAN J, JI L R, BUEH C. Intraseasonal climate characteristics of the summertime persistent anomalous circulation over Eurasian middle and high latitudes[J]. Chin J Atmos Sci, 2009, 33(2): 300-312(in Chinese), https://doi.org/10.1016/S1003-6326(09)60084-4.
[11] PAN J, JI L R. Interdecadal variation of the persistent anomalous circulation over Eurasian mid-high latitude in summer[J]. Marine Forecasts, 2016, 33(6): 57-68(in Chinese), https://doi.org/10.11737/j. issn. 1003-0239.2016.06.007. doi: 10.11737/j.issn.1003-0239.2016.06.007
[12] WANG H J. The weakening of the Asian monsoon circulation after the end of 1970s[J]. Adv Atmos Sci, 2001, 18(3): 376-386, https://doi.org/10.1007/BF02919316.
[13] DING Y H, WANG Z Y, SUN Y. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon, Part Ⅰ: Observed evidences[J]. Int J Climatol, 2008, 28(9): 1139-1161, https://doi.org/10.1002/joc.1615.
[14] ZHOU T J, GONG D Y, LI J, et al. Detecting and understanding the multi-decadal variability of the East Asian Summer Monsoon - Recent progress and state of affairs[J]. Meteorologische Zeitschrift, 2009, 18(4): 455-467, https://doi.org/10.1127/0941-2948/2009/0396.
[15] HSU H H, ZHOU T J, MATSUMOTO J. East Asian, Indochina and Western North Pacific Summer MonsoonAn update[J]. Asia-Pacific J Atmos Sci, 2014, 50(1): 45-68, https://doi.org/10.1007/s13143-014-0027-4.
[16] WU R G, CHEN L T. Decadal variation of summer rainfall in the Yangtze-Huaihe River valley and its relationship to atmospheric circulation anomalies over East Asia and western North Pacific[J]. Adv Atmos Sci, 1998, 15(4): 510-522, https://doi.org/10.1007/s00376-998-0028-2.
[17] GONG D Y, HO C H. Shift in the summer rainfall over the Yangtze River valley in the late 1970s[J]. Geophys Res Lett, 2002, 29(10): 781-784, https://doi.org/10.1029/2001GL 014523. doi: 10.1029/2001GL014523
[18] WU R G, WANG B. A contrast of the East Asian summer monsoon-ENSO relationship between 1962-77 and 1978-93[J]. J Climate, 2002, 15(22): 3266-3279, https://doi.org/10.1175/1520-0442(2002)015 < 3266: ACOTEA > 2.0.CO; 2. doi: 10.1175/1520-0442(2002)015<3266:ACOTEA>2.0.CO;2
[19] DING Y H, SUN Y, WANG Z Y, et al. Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon, Part Ⅱ: possible causes[J]. Int J Climatol, 2009, 29(13): 1926-1944, https://doi.org/10.1002/joc.1759.
[20] CHANG C P, ZHANG Y S, LI T. Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs, Part Ⅰ: Roles of the subtropical ridge[J]. J Climate, 2000, 13(24): 4310-4325, https://doi.org/10.1175/1520-0442(2000)013 < 4310: iaivot > 2.0.co; 2. doi: 10.1175/1520-0442(2000)013<4310:iaivot>2.0.co;2
[21] LI H M, DAI A G, ZHOU T J, et al. Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950-2000 [J]. Clim Dyn, 2010, 34(4), 501-514, https://doi.org/10.1007/s00382-008-0482-7.
[22] LIU Y M, WU G X, HONG J L, et al. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: Ⅱ, Change[J]. Clim Dyn, 2012, 39(5), 1183-1195, https://doi.org/10.1007/s00382-012-1335-y.
[23] WANG T, WANG H J, OTTERÅ O H, et al. Anthropogenic forcing of shift in precipitation in eastern China in late 1970s[J]. Atmos Chem Phys, 2013, 13(5), 11997-12032, https://doi.org/10.5194/acp-13-11997-2013.
[24] SONG F F, ZHOU T J, QIAN Y. Responses of East Asian summer monsoon to natural and anthropogenic forcing in the 17 latest CMIP5 models[J]. Geophys Res Lett, 2014, 41(2): 596-603, https://doi.org/10.1002/2013GL058705.
[25] WU R G, WEN Z P, SONG Y, et al. An interdecadal change in Southern China summer rainfall around 1992/93[J]. J Climate, 2010, 23(9): 2389-2403, https://doi.org/10.1175/2009JCLI3336.1.
[26] HUANG R H, LIU Y, FENG T. Interdecadal change of summer precipitation over Eastern China around the late-1990s and associated circulation anomalies, internal dynamical causes[J]. Chin Sci Bull, 2013, 58(8): 617-628 (in Chinese), https://doi.org/10.1007/s11434-012-5545-9.
[27] HU P, QIAO S B, FENG G L. Interdecadal variation of precipitation pattern and preliminary studies during the summer of late-1990s in East Asia[J]. Acta Phys Sin, 2014, 63(20): 209204 (in Chinese), https://doi.org/10.7498/aps.63.209204.
[28] ZHU Y L, WANG H J, MA J H, et al. Contribution of the phase transition of Pacific Decadal Oscillation to the late 1990s'shift in East China summer rainfall [J]. J Geophys Res Atmos, 2015, 120(17): 8817-8827, https://doi.org/10.1002/2015JD023545.
[29] KWON M H, JHUN J G, HA K J. Decadal change in East Asian summer monsoon circulation in the mid-1990s [J]. Geophys Res Lett, 2007, 34(21): L21706, https://doi.org/10.1029/2007GL031977.
[30] DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system[J]. Quart J Roy Meteor Soc, 2011, 137(656): 553-597, https://doi.org/10.1002/qj.828.
[31] HARRIS I, JONES P D, OSBORN T J, et al. Updated high-resolution grids of monthly climatic observationsthe CRU TS3.10 Dataset [J]. Int J Climatol 2014, 34(3): 623-642, https://doi.org/10.1002/joc.3711.
[32] XIE P, ARKIN P A. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs[J]. Bull Amer Meteor Soc, 1997, 78(1997): 2539-2558, https://doi.org/10.1175/1520-0477(1997)078 < 2539:GPAYMA > 2.0.CO; 2. doi: 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
[33] RAYNER N A, PARKER D E, HORTON E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. J Geophys Res, 2003, 108(D14): 4407, https://doi.org/10.1029/2002JD00 2670. doi: 10.1029/2002JD002670
[34] KANAMITSU M, EBISUZAKI W, WOOLLEN J, et al. NCEP-DOE AMIP-Ⅱ Reanalysis (R-2)[J]. Bull Amer Meteor Soc, 2002, 83(11): 1631-1643, https://doi.org/10.1175/BAMS-83-11-1631.
[35] LI J P, WU Z W, JIANG Z H, et al. Can global warming strengthen the East Asian summer monsoon?[J]. J Climate, 2010, 23(24): 6696-6705, https://doi.org/10.1175/2010JCLI34 34.1. doi: 10.1175/2010JCLI3434.1
[36] XU K, HE J H, ZHU C W. The interdecadal linkage of the summer precipitation in eastern China with the surface air temperature over Lake Baikal in the past 50 years[J]. Acta Meteorol Sin, 2011, 69(4): 570-580 (in Chinese), https://doi.org/10.11676/qxxb2011.050.
[37] ZHU C W, WANG B, QIAN W H, et al. Recent weakening of northern East Asian summer monsoon: A possible response to global warming[J]. Geophys Res Lett, 2012, 39(9): 9701, https://doi.org/10.1029/2012GL051155.
[38] ZHU X C, GUO Y Y, ZHANG H Y, et al. A southward withdrawal of the northern edge of the East Asian summer monsoon around the early 1990s[J]. Atmos Oceanic Sci Lett, 2018, 11(2): 136-142, https://doi.org/10.1080/16742834.2018.1410058.
[39] ZHOU C Y, ZHAO P, CHEN J M. The interdecadal change of summer water vapor over the Tibetan Plateau and associated mechanisms[J]. J Climate, 2019, 32(13): 4103-4119, https://doi.org/10.1175/JCLI-D-18-0364.1.
[40] HE C, LIN A L, GU D J, et al. Using eddy geopotential height to measure the western North Pacific subtropical high in a warming climate[J]. Theor Appl Climatol, 2018, 131(1-2): 681 -691, https://doi.org/10.1007/s00704-016-2001-9.
[41] WU L G, WANG C. Has the Western Pacific Subtropical High extended westward since the late 1970s?[J]. J Climate, 2015, 28(13): 5406-5413, https://doi.org/10.1175/jcli-d-14-00618.1.
[42] HE C, ZHOU T, LIN A, et al. Enhanced or weakened Western North Pacific Subtropical High under global warming?[J]. Sci Reports, 2015, 5(1): 16771, https://doi.org/10.1038/srep16771.
[43] SUTTON R T, DONG B. Atlantic Ocean influence on a shift in European climate in the 1990s[J] Nature Geoscience 2012, 5(11): 788-792, https://doi.org/10.1038/ngeo1595.
[44] WU B, ZHOU T J, LI T. Impacts of the Pacific-Japan and circumglobal teleconnection patterns on the interdecadal variability of the East Asian Summer Monsoon[J]. J Climate 2016, 29(9): 3253-3271, https://doi.org/10.1175/JCLI-D-15-0105.1.
[45] HONG X W, LU R Y, LI S L. Amplified summer warming in Europe-West Asia and Northeast Asia after the mid-1990s[J]. Environ Res Lett, 2017, 12(9): 094007, https://doi.org/10.1088/1748-9326/aa7909.
[46] WU R G, LIU G, ZHAO P. Contrasting Eurasian spring and summer climate anomalies associated with western and eastern Eurasian spring snow cover changes[J]. J Geophys Res Atmos, 2014, 119(12): 7410-7424, https://doi.org/10.1002/2014JD021764.
[47] COHEN J, SCREEN, J A, FURTADO J C, et al. Recent arctic amplification and extreme mid-latitude weather[J]. Nature Geoscience, 2014, 7(9): 627-637, https://doi.org/10.1038/ngeo2234.
[48] CHEN S F, WU R G, LIU Y. Dominant modes of interannual variability in Eurasian surface air temperature during boreal spring[J]. J Climate, 2016, 29(3): 1109-1125, https://doi.org/10.1175/JCLI-D-15-0524.1.
[49] YE K H, WU R G, LIU Y. Interdecadal change of Eurasian snow, surface temperature, and atmospheric circulation in the late 1980s[J]. J Geophys Res Atmos, 2015, 120(7): 2738-2753, https://doi.org/10.1002/2015JD023148.
[50] CHEN S F, WU R G. Impacts of early autumn Arctic sea ice concentration on subsequent spring Eurasian surface air temperature variations[J]. Clim Dyn, 2018, 51(7-8): 2523-2542, https://doi.org/10.1007/s00382-017-4026-x.
[51] CHEN S F, WU R G, SONG L Y, et al. Combined influence of the Arctic Oscillation and the Scandinavia pattern on spring surface air temperature variations over Eurasia[J]. J Geophys Res Atmos, 2018b, 123(17): 9410-9429, https://doi.org/10.1029/2018JD028685.
[52] KASKAOUTIS D G, RASHKI A, HOUSSOS E E, et al. Meteorological aspects associated with dust storms in the Sistan region, southeastern Iran[J]. Clim Dyn, 2015, 45 (1-2): 407-424, https://doi.org/10.1007/s00382-014-2208-3.
[53] KASKAOUTIS D G, HOUSSOS E E, MINVIELLE F, et al. Long-term variability and trends in the Caspian SeaHindu Kush Index: Influence on atmospheric circulation patterns, temperature and rainfall over the Middle East and southwest Asia[J]. Glob Planet Change 2018, 169 (OCT): 16-33, https://doi.org/10.1016/j. gloplacha.2018.07.004. doi: 10.1016/j.gloplacha.2018.07.004