[1] SASSEN K, WANG Z, LIU D. Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements[J]. J Geophys Res: Atmos, 2008, 113: D00A12, https://doi.org/10.1029/2008JD009972.
[2] LIOU K N. Influence of cirrus clouds on weather and climate processes: A global perspective[J]. Mon Wea Rev, 1986, 114(6): 1167-1199, https://doi.org/10.1175/1520-0493(1986)1142.0.CO; 2. doi: 10.1175/1520-0493(1986)1142.0.CO;2
[3] STEPHENS G L, TSAY S C, STACKHOUSE Jr P W, et al. The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback [J]. J Atmos Sci, 1990, 47(14): 1742-1754, https://doi.org/10.1175/1520-0469(1990)047 < 1742:TROTMA > 2.0.CO; 2. doi: 10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2
[4] INOUE T. On the temperature and effective emissivity determination of semi-transparent cirrus clouds by bispectral measurements in the 10μm window region[J]. J Meteor Soc Japan, 1985, 63(1): 88-99, https://doi.org/10.2151/jmsj1965.63.1_88.
[5] ACKERMAN S A, SMITH W, REVERCOMB H, et al. The 27-28 October 1986 FIRE IFO cirrus case study: Spectral properties of cirrus clouds in the 8-12 μm window [J]. Mon Wea Rev, 1990, 118(11): 2377-2388, https://doi.org/10.1175/1520-0493(1990)118 < 2377:TOFICC > 2.0.CO; 2. doi: 10.1175/1520-0493(1990)118<2377:TOFICC>2.0.CO;2
[6] PAROL F, BURIEZ J, BROGNIEZ G, et al. Information content of AVHRR channels 4 and 5 with respect to the effective radius of cirrus cloud particles[J]. J Appl Meteor, 1991, 30(7): 973-984, https://doi.org/10.1175/1520-0450-30.7.973.
[7] GIRAUD V, BURIEZ J, FOUQUART Y, et al. Large-scale analysis of cirrus clouds from AVHRR data: Assessment of both a microphysical index and the cloud-top temperature [J]. J Appl Meteor, 1997, 36(6): 664-675, https://doi.org/10.1175/1520-0450-36.6.664.
[8] CHIRIACO M, CHEPFER H, NOEL V, et al. Improving retrievals of cirrus cloud particle size coupling lidar and three-channel radiometric techniques[J]. Mon Wea Rev, 2004, 132(7): 1684-1700, https://doi.org/10.1175/1520-0493(2004)132 < 1684:IROCCP > 2.0.CO; 2. doi: 10.1175/1520-0493(2004)132<1684:IROCCP>2.0.CO;2
[9] PRABHAKARA C, FRASER R, DALU G, et al. Thin cirrus clouds: Seasonal distribution over oceans deduced from Nimbus-4 IRIS[J]. J Appl Meteor, 1988, 27(4): 379-399, https://doi.org/10.1175/1520-0450(1988)027 < 0379: TCCSDO > 2.0.CO; 2. doi: 10.1175/1520-0450(1988)027<0379:TCCSDO>2.0.CO;2
[10] HEIDINGER A K, PAVOLONIS M J. Gazing at cirrus clouds for 25 years through a split window, Part Ⅰ: Methodology[J]. J Appl Meteor Climatol, 2009, 48(6): 1100-1116, https://doi.org/10.1175/2008JAMC1882.1.
[11] WANG C, YANG P, BAUM B A, et al. Retrieval of ice cloud optical thickness and effective particle size using a fast infrared radiative transfer model[J]. J Appl Meteor Climatol, 2011, 50(11): 2283-2297, https://doi.org/10.1175/JAMC-D-11-067.1.
[12] KOPP T J, THOMAS W, HEIDINGER A K, et al. The ⅦRS Cloud Mask: Progress in the first year of S‐NPP toward a common cloud detection scheme[J]. J Geophys Res: Atmos, 2014, 119(5): 2441-2456, https://doi.org/10.1002/2013JD020458.
[13] OU S, LIOU K, YANG P, et al. Airborne retrieval of cirrus cloud optical and microphysical properties using Airborne Remote Earth Sensing System 5.1-5.3 and 3.7‐ μm channel data[J]. J Geophys Res: Atmos, 1998, 103 (D18): 23231-23242, https://doi.org/10.1029/98JD02069.
[14] MCNALLY A, WATTS P. A cloud detection algorithm for high ‐ spectral ‐ resolution infrared sounders[J]. Quart J Roy Meteor Soc, 2003, 129(595): 3411-3423, https://doi.org/10.1256/qj.02.208.
[15] MENZEL W P, SCHMIT T J, ZHANG P, et al. Satellitebased atmospheric infrared sounder development and applications[J]. Bull Amer Meteor Soc, 2018, 99(3): 583-603, https://doi.org/10.1175/BAMS-D-16-0293.1.
[16] CHAHINE M T. Remote sounding of cloudy atmospheres, Ⅰ: The single cloud layer[J]. J Atmos Sci, 1974, 31(1): 233-243, https://doi.org/10.1175/1520-0469(1974)031 < 0233:RSOCAI > 2.0.CO; 2. doi: 10.1175/1520-0469(1974)031<0233:RSOCAI>2.0.CO;2
[17] SMITH W, PLATT C. Comparison of satellite-deduced cloud heights with indications from radiosonde and ground-based laser measurements[J]. J Appl Meteor, 1978, 17(12): 1796-1802, https://doi.org/10.1175/1520-0450(1978)017 < 1796:COSDCH > 2.0.CO; 2. doi: 10.1175/1520-0450(1978)017<1796:COSDCH>2.0.CO;2
[18] MENZEL W, SMITH W, STEWART T. Improved cloud motion wind vector and altitude assignment using VAS [J]. J Clim Appl Meteor, 22: 377-384, https://doi.org/10.1175/1520-0450(1983)022 < 0377: ICMWVA > 2.0. CO; 2.
[19] SMITH W L, FREY R. On cloud altitude determinations from high resolution interferometer sounder (HIS) observations[J]. J Appl Meteor, 1990, 29(7): 658-662, https://doi.org/10.1175/1520-0450(1990)029 < 0658: OCADFH > 2.0.CO; 2. doi: 10.1175/1520-0450(1990)029<0658:OCADFH>2.0.CO;2
[20] GAO B, LI R, SHETTLE E. Cloud remote sensing using midwave IR CO2 and N2O slicing channels near 4.5 μm [J]. Remote Sens, 2011, 3(12): 1006-1013, https://doi.org/10.3390/rs3051006.
[21] LIN L, ZOU X, WENG F. Combining CrIS double CO2 bands for detecting clouds located in different layers of the atmosphere[J]. J Geophys Res: Atmos, 2017, 122(3): 1811-1827, https://doi.org/10.1002/2016JD025505.
[22] HAN Y, REVERCOMB H, CROMP M, et al. Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality[J]. J Geophys Res: Atmos, 2013, 118(22): 12734-12748, https://doi.org/10.1002/2013JD020344.
[23] CHEN Y, HAN Y, TREMBLAY D, et al. CrIS Full Resolution Processing and Validation System for JPSS [C]//19th International TOVS Study Conference (ITSC), Jeju Island: The International TOVS Working Group, 2014: 1-12. https://www.researchgate.net/publication/271838801_CrIS_Full_Resolution_Processing_and_Validation_System_for_JPSS
[24] CHEN Y, HAN Y, WENG F. Characterization of longterm stability of Suomi NPP Cross-track Infrared Sounder spectral calibration[J]. IEEE Trans Geosci Remote Sens, 2017, 55(2): 1147-1159, https://doi.org/10.1109/TGRS.2016.2620438.
[25] HAN Y, CHEN Y. Calibration algorithm for Cross-track Infrared Sounder full spectral resolution measurements [J]. IEEE Trans Geosci Remote Sens, 2018, 56(2): 1008-1016, https://doi.org/10.1109/TGRS.2017.2757940.
[26] CAO C, XIONG J, BLONSKI S, et al. Suomi NPP ⅦRS sensor data record verification, validation, and long‐term performance monitoring[J]. J Geophys Res: Atmos, 2013, 118(20): 11664-11678, https://doi.org/10.1002/2013JD020418.
[27] HUTCHISON K D, ROSKOVENSKY J K, JACKSON J M, et al. Automated cloud detection and classification of data collected by the Visible Infrared Imager Radiometer Suite (ⅦRS)[J]. Int J Remote Sens, 2005, 26(2): 4681-4706, https://doi.org/10.1080/01431160500196786.
[28] WENG F, HAN Y, van DELST P, et al. JCSDA Community Radiative Transfer Model (CRTM)[C]//14th International TOVS Study Conference. Beijing: The International TOVS Working Group, 2005: 217-222. https://www.researchgate.net/publication/237450697_JCSDA_Community_Radiative_Transfer_Model_-_Version_1_CRTM-V1
[29] CHEN Y, HAN Y, van DELST, et al. Assessment of shortwave infrared sea surface reflection and nonlocal thermodynamic equilibrium effects in the community radiative transfer model using IASI data[J]. J Atmos Oceanic Technol, 2013, 30(9): 2152-2160, https://doi.org/10.1175/JTECH-D-12-00267.1.
[30] YANG P, WEI H, HUANG H, et al. Scattering and absorption property database for nonspherical ice particles in the near-through far-infrared spectral region [J]. Appl Opt, 2005, 44(26): 5512-5523, https://doi.org/10.1364/AO.44.005512.
[31] van DELST P, WU X. A high resolution infrared sea surface emissivity database for satellite applications[C]//11th International TOVS Study Conference, Budapest: The International TOVS Working Group, 2000: 407-411.
[32] WU X, SMITH W L. Emissivity of rough sea surface for 8-13 μm: modeling and verification [J]. Appl Opt, 1997, 36(12): 2609-2619, https://doi.org/10.1364/AO.36.002609.
[33] LIU Q, BOUKABARA S. Community Radiative Transfer Model (CRTM) applications in supporting the Suomi National Polar-orbiting Partnership (SNPP) mission validation and verification[J]. Remote Sens Environ, 2014, 140: 744-754, https://doi.org/10.1016/j. rse.2013.10.011. doi: 10.1016/j.rse.2013.10.011
[34] WANG L, TREMBLAY D, ZHANG B, et al. Fast and accurate collocation of the visible infrared imaging radiometer suite measurements with cross-track infrared sounder[J]. Remote Sens, 2016, 8(1): 76, https://doi.org/10.3390/rs8010076.
[35] ROSSOW W B, SCHIFFER R A. Advances in understanding clouds from ISCCP[J]. Bull Amer Meteor Soc, 1999, 80(11): 2261-2288, https://doi.org/10.1175/1520-0477(1999)080%3C2261:AIUCFI%3E2.0.CO; 2. doi: 10.1175/1520-0477(1999)080%3C2261:AIUCFI%3E2.0.CO;2
[36] WENG F, ZOU X. 30-Year atmospheric temperature record derived by one-dimensional variational data assimilation of MSU/AMSU-A observations[J]. Clim Dyn, 2014, 43(7): 1857-1870, https://doi.org/10.1007/s00382-013-2012-5.
[37] CARRIER M, ZOU X, LAPENTA W M. Identifying cloud-uncontaminated AIRS spectra from cloudy FOV based on cloud-top pressure and weighting functions[J]. Mon Wea Rev, 2007, 135(6): 2278-2294, https://doi.org/10.1175/MWR3384.1.
[38] HAN Y, ZOU X, WENG F. Cloud and precipitation features of Super Typhoon Neoguri revealed from dual oxygen absorption band sounding instruments on board Fengyun‐3C satellite[J]. Geophys Res Lett, 2015, 42(3): 916-924, https://doi.org/10.1002/2014GL062753.
[39] WANG L, TIAN M, ZHENG Y. Assessment and improvement of the Cloud Emission and Scattering Index (CESI) - an algorithm for cirrus detection[J]. Int J Remote Sens, 2019, 40(14): 5366-5387, https://doi.org/10.1080/01431161.2019.1579938.
[40] WANG L, ZHENG Y, LIU C, et al. Combination of AIRS dual CO2 absorption bands to develop an ice clouds detection algorithm in different atmospheric layers[J]. Remote Sens, 2020, 12(1): 6, https://doi.org/10.3390/rs12010006.
[41] NIU Z, ZOU X. A potential application of heightdependent cloud emission and scattering indices for identifying CrIS clear channels above clouds[J]. Tellus A, 2020, 72(1): 1-21, https://doi.org/10.1080/16000870.2019.1696141.
[42] KAHN B H, LIOU K N, LEE S Y, et al. Nighttime cirrus detection using atmospheric infrared sounder window channels and total column water vapor[J]. J Geophys Res: Atmos, 2015, 110: D07203, https://doi.org/10.1029/2004JD005430.