[1] |
HASTENRATH S. Climate and Circulation of the Tropics [M]. Springer Netherlands, 1985, 45-50. |
[2] |
GILL A E. Atmosphere-Ocean Dynamics[M]. Academic Press, 1982, 158-159. |
[3] |
YANG Y B, CHEN L X. The coupled oscillation of air-sea system in the tropical Pacific Ocean[J]. Sci Atmos Sin, 1982, 6(1): 28-37 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXK198201003.htm |
[4] |
BAYR T, DOMMENGET D, MARTIN T, et al. The eastward shift of the Walker Circulation in response to global warming and its relationship to ENSO variability [J]. Clim Dyn, 2014, 43(9-10): 2747-2763, https://doi.org/10.1007/s00382-014-2091-y. |
[5] |
HAN W Q, GERALD A M, HU A X, et al. Decadal variability of the India and Pacific Walker cells since the 1960s: do they covary on decadal time scale?[J]. J Climate, 2017, 30: 8447-8467, https://doi.org/10.1175/JCLI-D-16-0783.1. |
[6] |
SOHN B J, PARK S C. Strengthened tropical circulations in past three decades inferred from water vapor transport [J]. J Geophys Res Atmos, 2010, 115: D15112, https://doi.org/10.1029/2009JD013713. |
[7] |
OLIVEIRA C P D, AÍMOLA L, AMBRIZZI T, et al. The influence of the regional Hadley and Walker Circulations on precipitation patterns over Africa in El Niño, La Niña, and neutral years[J]. Pure Appl Geophys, 2018, 175(5): 1- 14, https://doi.org/10.1007/s00024-018-1782-4. |
[8] |
YIM B, YEH S W, SOHN B J. ENSO-related precipitation and its statistical relationship with the Walker Circulation trend in CMIP5 AMIP Models[J]. Atmos, 2016, 7(2): 19-30, https://doi.org/10.3390/atmos7020019. |
[9] |
SASAKI W, DOIT, RICHARDS K J, et al. The influence of ENSO on the equatorial Atlantic precipitation through the Walker circulation in a CGCM[J]. Clim Dyn, 2015, 44 (1-2): 191-202, https://doi.org/10.1007/s00382-014-2133-5. |
[10] |
BJERKNES J. A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature[J]. Tellus, 1966, 18: 820-829, https://doi.org/10.1111/j.2153-3490.1966.tb00303.x. |
[11] |
BJERKNES J. Atmospheric teleconnections from the equatorial Pacific[J]. Mon Wea Rev, 1969, 97(3): 163-172. https://doi.org/10.1175/1520 -0493(1969) 097. doi: 10.1175/1520-0493(1969)097 |
[12] |
PHILANDER S G. The response of equatorial oceans to a relaxation of the trade winds[J]. J Phys Oceanogr 1981, 11(2): 176-189, https://doi.org/10.1175/1520-0485(1981) 011 < 0176:TROEOT > 2.0.CO; 2. doi: 10.1175/1520-0485(1981)011<0176:TROEOT>2.0.CO;2 |
[13] |
WYRTKI K. El Niño-The dynamic response of the Pacific Ocean to atmospheric forcing[J]. J Phys Oceanogr, 1975, 5(4): 572-584, https://doi.org/10.1175/1520-0485(1975) 005 < 0572:ENTDRO > 2.0.CO; 2. doi: 10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2 |
[14] |
WANG Y F, WANG B, OH J H. Impact of preceding El Niño on the East Asian summer atmosphere Circulation [J]. J Meteor Soc Japan, 2001, 79(1B): 575-588, https://doi.org/10.2151/jmsj.79.575. |
[15] |
ANDERSON B T. Investigation of a large-scale mode of ocean-atmosphere variability and its relation to tropical Pacific sea surface temperature anomalies[J]. J Climate, 2004, 17(20): 1089-4098, https://doi.org/10.1175/1520-0442(2004)017 < 4089:IOALMO > 2.0.CO; 2. doi: 10.1175/1520-0442(2004)017<4089:IOALMO>2.0.CO;2 |
[16] |
TASAMBAY-SALAZAR M, ORTIZBEVIÁ M J, ALVAREZ-GARCÍA F J, et al. An estimation of ENSO predictability from its seasonal teleconnections[J]. Theor Appl Climatol, 2015, 122: 1-17, http://doi.org/10.1007/s00704-015-1596-6. |
[17] |
WANG Y F, LUPO A R, QIN J. A Response in the ENSO cycle to an extratropical forcing mechanism during the El Niño to La Niña transition[J]. Tellus A, 2013, 65(1): 22431, https://doi.org/10.3402/tellusa.v65i0.22431. |
[18] |
WANG Y F. The role of Pacific subtropical high belts in the ENSO cycle[J]. Tellus A, 2019, 71: 1656514, https://doi.org/10.1080/16000870.2019.1656514. |
[19] |
WENG H, ASHOK K, BEHERA S K, et al. Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific Rim during boreal summer[J]. Clim Dyn, 2007, 29(2-3): 113-129, https://doi.org/10.1007/s00382-007-0234-0. |
[20] |
ZHANG W, JIN F F, TURNER A. Increasing autumn drought over southern China associated with ENSO regime shift[J]. Geophy Res Lett, 2014, 41(11): 4020-4026, https://doi.org/10.1002/2014GL060130. |
[21] |
ZHI X F, YANG H, XU S W, et al. A comparative analysis of atmospheric and oceanic conditions before the occurrence of two types if El Niño events[J]. J Trop Meteor, 2019, 25(1): 34-45, https://doi.org/10.16555/j.1006-8775.2019.01.004. |
[22] |
WANG Qin, LI Shuang-lin. Different summer rainfall anomaly patterns in northeast China Associated with two kinds of El Niño events[J]. J Trop Meteor, 2020, 26(2): 223-230, https://doi.org/10.46267/j.1006-8775.2020.020. |
[23] |
SUN Z Q, XIANG J, GUAN Y P. Strengthening of the Pacific Walker Circulation in the recent decades[J]. J Trop Oceanog, 2016, 35(2): 19-29 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-RDHY201602003.htm |
[24] |
BO Y Q, WU H B. The intensity and location of Walker Circulation and its influence on ENSO[J]. Science and Technology Innovation Herald, 2008, (31): 5-7 (in Chinese). |
[25] |
MA X M, ZHANG Y J. Walker Circulation has positive feedback effect to El Niño[J]. J Yunnan University, 2014, 36(S1): 103-111 (in Chinese). |
[26] |
SMITH T M, REYNOLDS R W, PETERSON T C, et al. Improvements to NOAA's historical merged land-ocean surface temperature analysis (1880-2006)[J]. J Climate, 2008, 21(10): 2283-2296, https://doi.org/10.1175/2007JCLI2100.1. |
[27] |
ZHANG L, LI T. A simple analytical model for understanding the formation of sea surface temperature patterns under global warming[J]. J Climate, 2014, 27 (22): 8413-8421, https://doi.org/10.1175/JCLI-D-14-00346.1. |
[28] |
ZHANG L, LI T. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming[J]. Clim Dyn, 2016, 48(3-4): 1-11, https://doi.org/10.1007/s00382-016-3123-6. |
[29] |
YUE R H, XU H M. Variations of the spring equatorial Indian Ocean zonal-vertical circulation and its correlation with the Walker Circulation[J]. Chin J Atmos Sci, 2016, 41(1): 213-226 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-DQXK201701017.htm |
[30] |
SOHN B J, YEH S W, SCHMETZ J, et al. Observational evidences of Walker circulation change over the last 30 years contracting with GCM results[J]. Clim Dyn, 2013, 40(7/8): 1721-1732, https://doi.org/10.1007/s00382-012-1484-z. |
[31] |
SUN S J, LI D L. Variability in the western Pacific subtropical high and its relationship with sea temperature variation considering the background of climate warming over the past 60 years[J]. J Trop Meteor, 2018, 24(4): 468-480, https://doi.org/10.16555/j. 1006-8775.2018.04.006. doi: 10.16555/j.1006-8775.2018.04.006 |
[32] |
YUAN S, XU J J, PAN Y S. Diversity of super El Niño events and their impact on east summer monsoon precipitation[J]. J Trop Meteor, 2019, 35(3): 379-389 (in Chinese). |
[33] |
ZHANG L, LI T. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming[J]. Clim Dyn, 2017, 48: 987-997, https://doi.org/10.1007/s00382-016-3123-6. |
[34] |
ANA C V F, LUIS A, TÉRCIO A, et al. Changes in intensity if the regional Hadley cell in Indian Ocean and its impacts on surrounding regions[J]. Meteorol Atmos Phys, 2017, 129: 229-246, https://doi.org/10.1007/s00703-016-0477-6. |