[1] |
LUO Y, ZHANG R, WAN Q, et al. The southern China monsoon rainfall experiment (SCMREX)[J]. Bull Amer Meteor Soc, 2017, 98(5): 999-1013, https://doi.org/10.1175/BAMS-D-15-00235.1. |
[2] |
WANG H, LUO Y, JOU B J D. Initiation, maintenance, and properties of convection in an extreme rainfall event during SCMREX: Observational analysis[J]. J Geophys Res: Atmos, 2014, 119(23): 13202-13206, https://doi.org/10.1002/2014JD022339. |
[3] |
WU M, LUO Y. Mesoscale observational analysis of lifting mechanism of a warm-sector convective system producing the maximal daily precipitation in China mainland during pre-summer rainy season of 2015[J]. J Meteor Res, 2016, 30(5): 719-736, https://doi.org/10.1007/s13351-016-6089-8. |
[4] |
WANG Y, SHEN X, LI X. Microphysical and radiative effects of ice clouds on responses of rainfall to the large-scale forcing during pre-summer heavy rainfall over southern China[J]. Atmos Res, 2010, 97(1-2): 35-46, https://doi.org/10.1016/j.atmosres.2010.03.005. |
[5] |
YUAN T, QIE X. TRMM-based study of lightning activity and its relationship with precipitation structure of a squall line in south China[J]. Chin J Atmos Sci, 2010, 34(1): 58-70 (in Chinese). http://www.oalib.com/paper/1556393 |
[6] |
QIE X, LIU D, SUN Z. Recent advances in research of lightning meteorology[J]. J Meteor Res, 2014, 28(5): 983-1002, https://doi.org/10.1007/s13351-014-3295-0. |
[7] |
QIAN Q, LIN Y, LUO Y, et al. Sensitivity of a simulated squall line during southern China monsoon rainfall experiment to parameterization of microphysics[J]. J Geophys Res: Atmos, 2018, 123(8): 4197-4220, https://doi.org/10.1002/2017JD027734. |
[8] |
WU C, LIU L, WEI M, et al. Statistics-based optimization of the polarimetric radar hydrometeor classification algorithm and its application for a squall line in south China[J]. Adv Atmos Sci, 2018, 35(3): 296-316, https://doi.org/10.1007/s00376-017-6241-0. |
[9] |
PAN Y, XUE M, GE G. Incorporating diagnosed intercept parameters and the graupel category within the ARPS cloud analysis system for the initialization of double-moment microphysics: Testing with a squall line over south China[J]. Mon Wea Rev, 2016, 144(1): 371-392, https://doi.org/10.1175/MWR-D-15-0008.1. |
[10] |
MENG Z, ZHANG F, MARKOWSKI P, et al. A modeling study on the development of a bowing structure and associated rear inflow within a squall line over south China[J]. J Atmos Sci, 2012, 69(4): 1182-1207, https://doi.org/10.1175/JAS-D-11-0121.1. |
[11] |
WEISMAN M L, SKAMAROCK W C, KLEMP J B. The resolution dependence of explicitly modeled convective systems[J]. Mon Wea Rev, 1997, 125(4): 527-548, https://doi.org/10.1175/1520-0493(1997)125 < 0527:TRDOEM > 2.0.CO; 2. doi: 10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2 |
[12] |
LEMONE M A, ZIPSER E J, TRIER S B. The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE[J]. J Atmos Sci, 1998, 55(23): 3493-3518, https://doi.org/10.1175/1520-0469(1998)055 < 3493:TROESA > 2.0.CO; 2. doi: 10.1175/1520-0469(1998)055<3493:TROESA>2.0.CO;2 |
[13] |
PETERS M, TETZLAFF G. The structure of West African squall lines and their environmental moisture budget[J]. Meteorol & Atmos Phys, 1988, 39(2): 74-84, https://doi.org/10.1007/BF01041933. |
[14] |
SOW B, VILTARD A, DE FELICE P, et al. Are squall lines detected by NCEP-NCAR reanalyses?[J]. Meteor Atmos Phys, 2005, 90(3-4): 209-214, https://doi.org/10.1007/s00703-004-0083-x. |
[15] |
WU D, MENG Z, YAN D. The predictability of a squall line in South China on 23 April 2007[J]. Adv Atmos Sci, 2013, 30(2): 485-502, https://doi.org/10.1007/s00376-012-2076-x. |
[16] |
DU Y, CHEN G. Heavy rainfall associated with double low-level Jets over southern China, Part Ⅱ: Convection initiation[J]. Mon Wea Rev, 2019, 147(2): 543-565, https://doi.org/10.1175/MWR-D-18-0102.1. |
[17] |
HUANG L, LUO Y. Evaluation of quantitative precipitation forecasts by TIGGE ensembles for south China during the presummer rainy season[J]. J Geophys Res: Atmos, 2017, 122(16): 8494-8516, https://doi.org/10.1002/2017JD026512. |
[18] |
WU Z, CAI J, LIN L, et al. Analysis of mesoscale systems and predictability of the torrential rain process in Guangzhou on 7 May 2017[J]. Meteor Mon, 2018, 4: 485-499 (in Chinese). |
[19] |
HUANG S. Rainstorms in Pre-Rainy Season over South China[M]. Guangdong Science Press: Guangzhou, China, 1986: 108-120 (in Chinese). |
[20] |
LIN L, FENG Y, HUANG Z. Technical Manuals of the Weather Forecasting in Guangdong Province[M]. Beijing: China Meteorological Press, 2006, 143-152 (in Chinese). |
[21] |
CHEN X, ZHAO K, XUE M. Spatial and temporal characteristics of warm season convection over Pearl River Delta region, China, based on 3 years of operational radar data[J]. J Geophys Res: Atmos, 2014, 119(22): 12447-12465, https://doi.org/10.1002/2014JD021965. |
[22] |
CHEN X, ZHAO K, XUE M, et al. Radar ‐ observed diurnal cycle and propagation of convection over the Pearl River Delta during Mei ‐ Yu season[J]. J Geophys Res: Atmos, 2015, 120(24): 12557-12575, https://doi.org/10.1002/2015JD023872. |
[23] |
CHEN X, ZHANG F, ZHAO K. Diurnal variations of the land-sea breeze and its related precipitation over south China[J]. J Atmos Sci, 2016, 73(12): 4793-4815, https://doi.org/10.1175/JAS-D-16-0106.1. |
[24] |
CHEN X, ZHANG F, ZHAO K. Influence of monsoonal wind speed and moisture content on intensity and diurnal variations of the Meiyu season coastal rainfall over south China[J]. J Atmos Sci, 2017, 74(9): 2835-2856, https://doi.org/10.1175/JAS-D-17-0081.1. |
[25] |
HAMADA A, TAKAYABU Y N. Large-scale environmental conditions related to midsummer extreme rainfall events around Japan in the TRMM region[J]. J Clim, 2018, 31(17): 6933-6945, https://doi.org/10.1175/JCLI-D-17-0632.1. |
[26] |
HUANG Y, LIU Y, LIU Y, et al. Mechanisms for a record‐ breaking rainfall in the coastal metropolitan city of Guangzhou, China: observation analysis and nested very large eddy simulation with the WRF Model[J]. J Geophys Res: Atmos, 2019, 124(3): 1370-1391, https://doi.org/10.1029/2018JD029668. |
[27] |
KARAN H, FITZPATRICK P J, HILL C M, et al. The formation of multiple squall lines and the impacts of WSR-88D radial winds in a WRF simulation[J]. Wea Forecasting, 2010, 25(1): 242-262, https://doi.org/10.1175/2009WAF2222263.1. |
[28] |
CHEN G T, CHOU H C. General characteristics of squall lines observed in TAMEX[J]. Mon Wea Rev, 1993, 121 (3): 726-733, https://doi.org/10.1175/1520-0493(1993)121 < 0726:GCOSLO > 2.0.CO; 2. doi: 10.1175/1520-0493(1993)121<0726:GCOSLO>2.0.CO;2 |
[29] |
WECKWERTH T M. The effect of small-scale moisture variability on thunderstorm initiation[J]. Mon Wea Rev, 2000, 128(12): 4017-4030, https://doi.org/10.1175/1520-0493(2000)129 < 4017:TEOSSM > 2.0.CO; 2. doi: 10.1175/1520-0493(2000)129<4017:TEOSSM>2.0.CO;2 |
[30] |
LIN P F, CHANG P L, JOU B J D, et al. Warm season afternoon thunderstorm characteristics under weak synoptic-scale forcing over Taiwan Island[J]. Wea Forecasting, 2011, 26(1): 44-60, https://doi.org/10.1175/2010WAF2222386.1. |
[31] |
DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA‐ Interim reanalysis: Configuration and performance of the data assimilation system[J]. Quart J Roy Meteor Soc, 2011, 137(656): 553-597, https://doi.org/10.1002/qj.828. |
[32] |
ZHONG S, LI X, YANG S, et al. Characteristics and synoptic environment of torrential rain in the warm sector over south China: a composite study[J]. Meteor Atmos Phy, 2019, 131(5): 1191-1203, https://doi.org/10.1007/s00703-018-0629-y. |
[33] |
BOHLINGER P, SORTEBERG A, SODEMANN H. Synoptic conditions and moisture sources actuating extreme precipitation in Nepal[J]. J Geophys Res: Atmos, 2017, 122(23): 12653-12671, https://doi.org/10.1002/2017JD027543. |
[34] |
MARANAN M, FINK A H, KNIPPERTZ P. Rainfall types over southern West Africa: Objective identification, climatology and synoptic environment[J]. Q J Roy Meteor Soc, 2018, 144(714): 1628-1648, https://doi.org/10.1002/qj.3345. |
[35] |
YOKOYAMA C, TAKAYABU Y N. Relationships between rain characteristics and environment, Part Ⅱ: Atmospheric disturbances associated with shallow convection over the eastern tropical Pacific[J]. Mon Wea Rev, 2012, 140(9): 2841-2859, https://doi.org/10.1175/MWR-D-11-00251.1. |
[36] |
RAVEH-RUBIN S, WERNLI H. Large ‐ scale wind and precipitation extremes in the Mediterranean: a climatological analysis for 1979-2012[J]. Q J Roy Meteor Soc, 2015, 141(691): 2404-2417, https://doi.org/10.1002/qj.2531. |
[37] |
ROBERTS R D, RUTLEDGE S. Nowcasting storm initiation and growth using GOES-8 and WSR-88D data [J]. Wea Forecasting, 2003, 18(4): 562-584, https://doi.org/10.1175/1520-0434(2003)018 < 0562:NSIAGU > 2.0.CO; 2. doi: 10.1175/1520-0434(2003)018<0562:NSIAGU>2.0.CO;2 |
[38] |
WANG M, PAEGLE J. Impact of analysis uncertainty upon regional atmospheric moisture flux[J]. J Geophys Res: Atmos, 1996, 101(D3): 7291-7303, https://doi.org/10.1029/95JD02896. |
[39] |
HAMADA A, TAKAYABU Y N, LIU C, et al. Weak linkage between the heaviest rainfall and tallest storms [J]. Nat Commun, 2015, 6: 6213, https://doi.org/10.1038/ncomms7213. |
[40] |
XU W, ZIPSER E J. Properties of deep convection in tropical continental, monsoon, and oceanic rainfall regimes[J]. Geophys Res Lett, 2012, 39(7): L07802, https://doi.org/10.1029/2012GL051242. |
[41] |
XU W, ZIPSER E J. Convective intensity, vertical precipitation structures, and microphysics of two contrasting convective regimes during the 2008 TiMREX [J]. J Geophys Res: Atmos, 2015, 120(9): 4000-4016, https://doi.org/10.1002/2014JD022927. |