[1] |
CHEN Jiong, ZHENG Yong-guang, ZHANG Xiao-ling, et al. Distribution and diurnal variation of warm-season short-duration heavy rainfall in relation to the MCSs in China [J]. J Meteor Res, 2013, 27(6): 868-888, https://doi.org/10.1007/s13351-013-0605-x. |
[2] |
YANG X L, SUN J H, ZHENG Y G. A 5-yr climatology of severe convective wind events over China[J]. Wea Forecasting, 2017, 32(4): 1289-1299, https://doi.org/10.1175/WAF-D-16-0101.1. |
[3] |
LI X, ZHANG Q, ZOU T, et al. Climatology of hail frequency and size in China, 1980-2015[J]. J Appl Meteor Climatol, 2018, 57(4): 875-887, https://doi.org/10.1175/JAMC-D-17-0208.1. |
[4] |
ZHENG Yong-guang, ZHANG Xiao-ling, ZHOU Qin-liang, et al. Review on severe convective weather short-term forecasting and nowcasting[J]. Meteor Mon, 2010, 36 (7): 33-42 (in Chinese). http://d.wanfangdata.com.cn/Periodical/qx201007007 |
[5] |
HE Li-fu, ZHOU Qing-liang, CHEN Yun, et al. Introduction and examination of potential forecast for strong convective weather at national level[J]. Meteor Mon, 2011, 37(7): 777-784 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QXXX201107002.htm |
[6] |
HOUZE R A. 100 years of research on mesoscale convective systems[J]. Meteor Monogr, 2018, 59: 171-1754, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0001.1. |
[7] |
LIANG Jian-yu, SUN Jian-hua. The formation mechanism of damaging surface wind during the squall line in June 2009[J]. Chin J Atmos Sci, 2012, 36(2): 316-336 (in Chinese). http://cn.bing.com/academic/profile?id=847c0c97f26d27f4ff68ad0f79e35aa3&encoded=0&v=paper_preview&mkt=zh-cn |
[8] |
MENG Z, ZHANG Y. On the squall lines preceding landfalling tropical cyclones in China[J]. Mon Wea Rev, 2012, 140(2): 445-470, https://doi.org/10.1175/MWR-D-10-05080.1. |
[9] |
MENG Z, ZHANG F, MARKOWSKI P, et al. A modeling study on the development of a bowing structure and associated rear inflow within a squall line over south China [J]. J Atmos Sci, 2012, 69(4): 1182-1207, https://doi.org/10.1175/JAS-D-11-0121.1. |
[10] |
MENG Z, YAO D, ZHANG Y. General features of squall lines in east China[J]. Mon Wea Rev, 2013, 141(5): 1629-1647, https://doi.org/10.1175/mwr-d-12-00208.1. |
[11] |
ZHENG L, SUN J, ZHANG X, et al. Organizational modes of mesoscale convective systems over central east China[J]. Wea Forecasting, 2013, 28(5): 1081-1098, https://doi.org/10.1175/WAF-D-12-00088.1. |
[12] |
YANG X, SUN J. Organizational modes of severe windproducing convective systems over North China[J]. Adv Atmos Sci, 2018, 35(5): 540-549, https://doi.org/10.1007/s00376-017-7114-2. |
[13] |
TAO Shi-yan. Heavy Rainfalls in China[M]. Beijing: Science Press, 1980 (in Chinese). |
[14] |
BLUESTEIN H B, JAIN M H. Formation of mesoscale lines of precipitation: severe squall lines in Oklahoma during the spring[J]. J Atmos Sci, 1985, 42(16): 1711-1732, https://doi.org/10.1175/1520-0493(1987)115 < 2719: FOMLOP > 2.0.CO; 2. doi: 10.1175/1520-0493(1987)115<2719:FOMLOP>2.0.CO;2 |
[15] |
KLIMOWSKI B A, BUNKERS M J, HJELMFELT M R, et al. Severe convective windstorms over the Northern High Plains of the United States[J]. Wea Forecasting, 2003, 18(3): 502-519, https://doi.org/10.1175/1520-0434 (2003)18 < 502:SCWOTN > 2.0.CO; 2. doi: 10.1175/1520-0434(2003)18<502:SCWOTN>2.0.CO;2 |
[16] |
PARKER M D, JOHNSON R H. Organizational modes of midlatitude mesoscale convective systems[J]. Mon Wea Rev, 2000, 128(10): 3413-3436, https://doi.org/10.1175/1520-0493(2001)129 < 3413:OMOMMC > 2.0.CO; 2. doi: 10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2 |
[17] |
ZHENG Lin-lin, SUN Jian-hua. Characteristics of synoptic and surface circulation of mesoscale convective systems in dry and moist environmental conditions[J]. Chin J Atmos Sci, 2013, 37(4): 891-904 (in Chinese), https://doi.org/10.3878/j.issn.1006-9895.2012.12090. |
[18] |
WEISMAN M L, KLEMP J B. The dependence of numerically simulated convective storms on vertical wind shear and buoyancy[J]. Mon Wea Rev, 1982, 110(6): 504-520, https://doi.org/10.1175/1520-0493(1982)110 < 0504: TDONSC > 2.0.CO; 2. doi: 10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2 |
[19] |
ZIPSER E J. Mesoscale and convective-scale downdrafts as distinct components of squall-line circulation[J]. Mon Wea Rev, 1977, 105(12): 1568-1589, https://doi.org/10.1175/1520-0493(1977)105 < 1568: MACDAD > 2.0. CO; 2. doi: 10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2 |
[20] |
OGURA Y, LIOU M T. The structure of a midlatitude squall line[J]. J Atmos Sci, 1980, 37(3): 553-567, https://doi. org/10.1175/1520-0469(1980)037 < 0553: TSOAMS > 2.0.CO; 2. doi: 10.1175/1520-0469(1980)037<0553:TSOAMS>2.0.CO;2 |
[21] |
LU C, SUN C, LIU Y, et al. Observational relationship between entrainment rate and environmental relative humidity and implications for convection parameterization[J]. Geophys Res Lett, 2018, 45(24): 13495-13504, https://doi.org/10.1029/2018GL080264. |
[22] |
BROWN R G, ZHANG C. Variability of midtropospheric moisture and its effect on cloud-top height distribution during TOGA COARE[J]. J Atmos Sci, 1997, 54(23): 2760-2774, https://doi.org/10.1175/1520-0469(1997)054 < 2760:VOMMAI > 2.0.CO; 2. doi: 10.1175/1520-0469(1997)054<2760:VOMMAI>2.0.CO;2 |
[23] |
REDELSPERGER J L, PARSONS D B, GUICHARD F. Recovery processes and factors limiting cloud-top height following the arrival of a dry intrusion observed during TOGA COARE[J]. J Atmos Sci, 2002, 59(16): 2438-2457, https://doi.org/10.1175/1520-0469(2002)059 < 2438: RPAFLC > 2.0.CO; 2. doi: 10.1175/1520-0469(2002)059<2438:RPAFLC>2.0.CO;2 |
[24] |
RIDOUT J A. Sensitivity of tropical Pacific convection to dry layers at mid-to upper levels: Simulation and parameterization tests[J]. J Atmos Sci, 2002, 59(23): 3362-3381, https://doi.org/10.1175/1520-0469(2002)059 < 3362:SOTPCT > 2.0.CO; 2. doi: 10.1175/1520-0469(2002)059<3362:SOTPCT>2.0.CO;2 |
[25] |
TAKEMI T, HIRAYAMA O, LIU C. Factors responsible for the vertical development of tropical oceanic cumulus convection[J]. Geo Res Lett, 2004, 31: L11109, https://doi.org/10.1029/2004GL020225. |
[26] |
TAKEMI T. Impacts of moisture profile on the evolution and organization of midlatitude squall lines under various shear conditions[J]. Atmos Res, 2006, 82(1-2): 37-54, https://doi.org/10.1016/j.atmosres.2005.01.007. |
[27] |
TAKEMI T. A sensitivity of squall line intensity to environmental static stability under various shear and moisture conditions[J]. Atmos Res, 2007a, 84(4): 374-389, https://doi.org/10.1016/j.atmosres.2006.10.001. |
[28] |
TAKEMI T. Convection and precipitation under various stability and shear conditions: Squall lines in tropical versus midlatitude environment[J]. Atmos Res, 2014, 142 (3): 111-123, https://doi.org/10.1016/j. atmosres.2013.07.010. doi: 10.1016/j.atmosres.2013.07.010 |
[29] |
CARBON R, BRANT FOOTE G, MONCRIEFF M, et al. Convective Dynamics: Panel Report[M]. Radar in Meteorology. Amer Meteor Soc. 1990, 391-400. |
[30] |
ZHANG Qun, ZHANG Wei-hung, JIANG Yong-qian. Numerical trial of PBL convergence line developing to squall line[J]. Scientia Meteor Sinica, 2001, 21(3): 308-315 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-QXKX200103006.htm |
[31] |
WILSON J W, SCHREIBER W E. Initiation of convective storms by radar-observed boundary layer convergence lines[J]. Mon Wea Rev, 1986, 114(12): 2516-2536, https://doi.org/10.1175/1520-0493(1986)114 < 2516: IOCSAR > 2.0.CO; 2. doi: 10.1175/1520-0493(1986)114<2516:IOCSAR>2.0.CO;2 |
[32] |
WILSON J W, ROBERTS R, MUELLER C. Forecast demonstration project: convective storm now casting[J]. Wea Forecasting, 2004, 19: 131-150. doi: 10.1175/1520-0434(2004)019<0131:SFDPCS>2.0.CO;2 |
[33] |
LEMONE M A, ZIPSER E J, TRIER S B. The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE[J]. J Atmos Sci, 1998, 55(23): 3493-3518, https://doi.org/10.1175/1520-0469(1998)055 < 3493:TROESA > 2.0.CO; 2. doi: 10.1175/1520-0469(1998)055<3493:TROESA>2.0.CO;2 |
[34] |
JOHNSON R H, AVES S L, CIESIELSKI P E, et al. Organization of oceanic convection during the onset of the 1998 East Asian summer monsoon[J]. Mon Wea Rev, 2005, 133(1): 131-148, https://doi.org/10.1175/MWR-2843.1 |
[35] |
ROTUNNO R, KLEMP J B, WEISMAN M L. A theory for strong, long-lived squall lines[J]. J Atmos Sci, 1988, 45(3): 463-485, https://doi.org/10.1175/1520-0469(1988) 045 < 0463:ATFSLL > 2.0.CO; 2. doi: 10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2 |
[36] |
WEISMAN M L, KLEMP J B, ROTUNNO R. Structure and evolution of numerically simulated squall lines[J]. J Atmos Sci, 1988, 58(14): 1630-1649, https://doi.org/10.1175/1520-0469(1988)045 < 1990:SAEONS > 2.0.CO; 2. doi: 10.1175/1520-0469(1988)045<1990:SAEONS>2.0.CO;2 |
[37] |
FOVELL R G, OGURA Y. Effect of vertical wind shear on numerically simulated multicell storm structure[J]. J Atmos Sci, 1989, 46(20): 3144-3176, https://doi.org/10.1175/1520-0469(1989)046 < 3144: EOVWSO > 2.0. CO; 2. doi: 10.1175/1520-0469(1989)046<3144:EOVWSO>2.0.CO;2 |
[38] |
ZHENG Lin-lin, SUN Jian-hua. The impact of vertical wind shear on the intensity and organizational mode of mesoscale convective systems using numerical experiments[J]. Chin J Atmos Sci, 2016, 40 (2): 324-340 (in Chinese), https://doi.org/10.3878/j. issn. 1006-9895.1505.14311. doi: 10.3878/j.issn.1006-9895.1505.14311 |
[39] |
WEISMAN M L. The role of convectively generated rearinflow jets in the evolution of long-lived meso convective systems[J]. J Atmos Sci, 1992, 49(19): 1826-1847, https://doi.org/10.1175/1520-0469(1992)049 < 1826:TROCGR > 2.0.CO; 2. doi: 10.1175/1520-0469(1992)049<1826:TROCGR>2.0.CO;2 |
[40] |
WEISMAN M L, ROTUNNO R. A theory for strong long-lived squall lines"revisited[J]. J Atmos Sci, 2004, 61(4): 361-382, https://doi.org/10.1175/1520-0469(2004)061 < 0361:ATFSLS > 2.0.CO; 2. doi: 10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2 |
[41] |
TAKEMI T. Environmental stability control of the intensity of squall lines under low-level shear conditions [J]. J Geophys Res, 2007b, 112: D24110. doi: 10.1029/2007JD008793 |
[42] |
TAKEMI T. Dependence of the precipitation intensity in mesoscale convective systems to temperature lapse rate [J]. Atmos Res, 2010, 96: 273-285. doi: 10.1016/j.atmosres.2009.09.002 |
[43] |
SUN Jian-hua, ZHENG Lin-lin, ZHAO Si-xiong. Impact of moisture on the organizational mode and intensity of squall lines determined through numerical experiments [J]. Chin J Atmos Sci, 2014, 38(4): 742-755 (in Chinese), https://doi.org/10.3878/j.issn.1006-9895.2013.13187. |
[44] |
JOHNSON R H, BRESCH J F. Diagnosed characteristics of precipitation systems over Taiwan during the May-June 1987 TAMEX[J]. Mon Wea Rev, 1991, 119(11): 2540-2557. doi: 10.1175/1520-0493(1991)119<2540:DCOPSO>2.0.CO;2 |
[45] |
PAN Yu-jie, ZHAO Kun, PAN Yi-nong. Single-Doppler radar observation of a heavy precipitation supercell on a severe squall line[J]. Acta Meteor Sinica, 2008, 66(4): 621-636 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QXXB200804014.htm |
[46] |
MCCAUL Jr, COHEN E W, KIRKPATRICK C. The sensitivity of simulated storm structure, intensity, and precipitation efficiency to environmental temperature[J]. Mon Wea Rev, 2005, 133: 3015-3037. doi: 10.1175/MWR3015.1 |
[47] |
SEELEY J T, ROMPS D M. Tropical cloud buoyancy is the same in a world with or without ice[J]. Geophys Res Lett, 2016, 43: 3572-3579, https://doi.org/10.1002/2016GL068583. |
[48] |
PARK S B, GENTINE P, SCHNEIDER K. et al. Coherent structures in the boundary and cloud layers: Role of updrafts, subsiding shells, and environmental subsidence [J]. J Atmos Sci, 2016, 73(4): 1789-1814, https://doi.org/10.1175/jas-d-15-0240.1. |
[49] |
SHERWOOD S C, HERNANDEZ-DECKERS D, COLIN M, et al. Slippery thermals and the cumulus entrainment paradox[J]. J Atmos Sci, 2013, 70(8): 2426-2442. https://doi.org/10.1175/JAS-D-12-0220.1. |
[50] |
LU C, LIU Y, ZHANG G J, et al. Improving parameterization of entrainment rate for shallow convection with aircraft measurements and large eddy simulation[J]. J Atmos Sci, 2016, 73(2): 761-773, https://doi.org/10.1175/JAS-D-15-0050.1. |
[51] |
FENG Z, HAGOS S, ROWE A K, et al. Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign [J]. J Adv Mod Earth Sys, 2015, 7(2): 357-381. doi: 10.1002/2014MS000384 |
[52] |
CHEN S, KERNS B W, GUY N, et al. Aircraft observations of dry air, the ITCZ, convective cloud systems, and cold pools in MJO during DYNAMO[J]. Bull Amer Meteor Soc, 2016, 97(3): 405-423. doi: 10.1175/BAMS-D-13-00196.1 |
[53] |
WALLACE J, HOBBS P. Atmospheric Science: An Introductory Survey[M]. San Diego, CA: Academic Press, 2006. |