[1] |
YANAI M, LI C, SONG Z. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon[J]. J Meteorol Soc Japan, 1992, 70(1B): 319-351, https://doi.org/10.2151/jmsj1965.70.1B_319. |
[2] |
YANAI M, TOMITA T. Seasonal and interannual variability of atmospheric heat sources and moisture sinks as determined from NCEP-NCAR reanalysis[J]. J Climate, 1998, 11(3): 463-482, https://doi.org/10.1175/1520-0442(1998)011<0463:SAIVOA>2.0.CO;2. doi: 10.1175/1520-0442(1998)011<0463:SAIVOA>2.0.CO;2 |
[3] |
LI C, YANAI M. The onset and interannual variability of the Asian summer monsoon in relation to land-sea thermal contrast[J]. J Climate, 1996, 9(2): 358-375, https://doi.org/10.1175/1520-0442(1996)009<0358:TOAIVO>2.0.CO;2. doi: 10.1175/1520-0442(1996)009<0358:TOAIVO>2.0.CO;2 |
[4] |
WU G, LIU Y. Thermal adaptation, overshooting, dispersion, and subtropical anticyclone, Part I: thermal adaptation and overshooting[J]. Chin J Atmos Sci, 2000, 24(4): 433-446 (in Chinese). http://ci.nii.ac.jp/naid/10020819445 |
[5] |
YAO X, YAN L, ZHANG S. Research progresses and prospects of atmospheric diabatic heating[J]. Meteorol Mon, 2019, 45(1): 1-16 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-QXXX201901001.htm |
[6] |
YE D, ZHANG J. Preliminary simulation experiment on the influence of heating effect on the East Asian atmospheric circulation over the Tibetan Plateau[J]. Sci China, 1974, 3: 301-320 (in Chinese). |
[7] |
WU G, ZHANG Y. Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea[J]. Mon Wea Rev, 1998, 126(4): 913-927, https://doi.org/10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2. doi: 10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2 |
[8] |
LUO X, XU J. Estimate of atmospheric heat source over Tibetan Plateau and its uncertainties[J]. Clim Chang Res, 2019, 15 (1): 33-40 (in Chinese). |
[9] |
LUO X Q, XU J J, LI K. A review of atmospheric heat sources over Tibetan Plateau [J]. J Guangdong Ocean University, 2019, 39(6): 130-136 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-SHDX201906017.htm |
[10] |
XIE J, YU Y, LI J, et al. Comparison of surface sensible and latent heat fluxes over the Tibetan Plateau from reanalysis and observations[J]. Mete Atmos Hys, 2018: 1-18, https://doi.org/10.1007/s00703-018-0595-4. |
[11] |
ZHONG S, WU Z, HE J. Comparisons of the thermal effects of the Tibetan Plateau with NCEP-I and ERA-40 reanalysis data[J]. Atmos-Ocean, 2013, 51(1): 75-87, https://doi.org/10.1080/07055900.2012.755668. |
[12] |
JIANG X, LI Y, YANG S, et al. Interannual variation of summer atmospheric heat source over the Tibetan Plateau and the role of convection around the western maritime continent[J]. J Climate, 2016, 29(1): 121-138, https://doi.org/10.1175/JCLI-D-15-0181.1. |
[13] |
ZHAO P, CHENG L. Climatic characteristics of atmospheric heat source over the Tibetan Plateau in the past 35 years and its relationship with precipitation in China[J]. Sci China (Series D), 2001, 31(4): 327-332, https://doi.org/10.1007/BF02907098. |
[14] |
HU J, DUAN A. Relative contributions of the Tibetan Plateau thermal forcing and the Indian Ocean sea surface temperature basin mode to the interannual variability of the East Asian summer monsoon[J]. Clim Dyn, 2015, 45(9): 2697-2711, https://doi.org/10.1007/s00382-015-2503-7. |
[15] |
HUANG R, CHEN J, WANG L, et al. Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system[J]. Adv Atmos Sci, 2012, 29(5): 910-942, https://doi.org/10.1007/s00376-012-2015-x. |
[16] |
JI C, ZHANG Y, CHENG Q, et al. On the relationship between the early spring tropical Indian Ocean's sea surface temperature (SST) and the Tibetan Plateau atmospheric heat source in summer[J]. Glob Planet Chang, 2018, 164: 1-10, https://doi.org / 10.1016/j. gloplacha.2018.02.011. doi: 10.1016/j.gloplacha.2018.02.011 |
[17] |
HE B, LIU Y, WU G, et al. The role of air-sea interactions in regulating the thermal effect of the Tibetan-Iranian Plateau on the Asian summer monsoon[J]. Clim Dyn, 2019, 52(7-8): 4227-4245, https://doi.org/10.1007/s00382-018-4377-y. |
[18] |
WANG Z, DUAN A, YANG S. Potential regulation on the climatic effect of Tibetan Plateau heating by tropical air-sea coupling in regional models[J]. Clim Dyn, 2019, 52: 1685-1694, https://doi.org/10.1007/s00382-018-4218-z. |
[19] |
DAI A G, LI H, SUN Y, et al. The relative roles of upper and lower tropospheric thermal contrasts and tropical influences in driving Asian summer monsoons[J]. J Geophys Res, 2013, 118(13): 7024-7045, https://doi.org/10.1002/jgrd.50565. |
[20] |
ZHANG Y, FAN G, HUA W, et al. Differences in atmospheric heat source between the Tibetan Plateau-South Asia region and the southern tropical Indian Ocean and their impacts on the Indian summer monsoon outbreak[J]. J Mete Res, 2017, 31(3): 540-554, https://doi.org/10.1007/s13351-017-6042-5. |
[21] |
ZHANG L, XIE Q, YANG X. Interdecadal anomaly of atmospheric diabatic heating and interdecadal weakening of East Asian summer monsoon at the end of 1970s[J]. J Mete Sci, 2015, 35(6): 663-671, https://doi.org/10.1007/s13351-021-0101-7. |
[22] |
DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system[J]. Quart J Royal Meterol Soc, 2011, 137(656): 553-597, https://doi.org/10.1002/qj.828. |
[23] |
KOBAYASHI S, OTA Y, HARADA Y, et al. The JRA-55 reanalysis: General specifications and basic characteristics[J]. J Mete Soc Japan Ser Ⅱ, 2015, 93(1): 5-48, https://doi.org/10.2151/jmsj.2015-001. |
[24] |
GELARO R, MCCARTY W, SUÁREZ M J, et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2)[J]. J Climate, 2017, 30(14): 5419-5454, https://doi.org/10.1175/JCLI-D-16-0758.1. |
[25] |
KANAMITSU M, EBISUZAKI W, WOOLLEN J, et al. NCEP-DOE AMIP-Ⅱ Reanalysis (r-2)[J]. Bull Amer Meterol Soc, 2002, 83(11): 1631-1644, https://doi.org/10.1175/BAMS-83-11-1631. |
[26] |
FUJIWARA M, WRIGHT J S, MANNEY G L, et al. Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems[J]. Atmos Chemi Physi, 2017, 17(2): 1417-1452, https:// doi.org/10.5194/acp-17-1417-2017. |
[27] |
HE J H, LI Q, WEI J, et al. Reinvestigations on the East Asian subtropical monsoon and tropical monsoon[J]. Chin J Atmos Sci, 2007, 31: 1257-1265 (in Chinese). |
[28] |
ZHANG B, ZHOU X J, CHEN L X, et al. An East Asian land-sea atmospheric heat source difference index and its relation to general circulation and summer rainfall over China[J]. Science China Earth Sciences, 2010, 53(11): 1734-1746, https://doi.org/10.1007/s11430-010-4024-x. |
[29] |
FENG L, ZHOU T. Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis[J]. J Geophys Res: Atmos, 2012, 117: D20114, https://doi.org/10.1029/2011JD017012. |
[30] |
DUAN A, SUN R, HE J. Impact of surface sensible heating over the Tibetan Plateau on the western Pacific subtropical high: A land-air-sea interaction perspective [J]. Adv Atmos Sci, 2017, 34(2): 157-168, https://doi.org/10.1007/s00376-016-6008-z. |
[31] |
LIU Y, LI G. Climatic characteristics of atmospheric heat source over the Tibetan Plateau and its possible relationship with the generation of the Tibetan Plateau vortex in summer[J]. Chin J Atmos Sci, 2016, 40(4): 864-876 (in Chinese). |
[32] |
SU T. Research on Spatial-Temporal Variation Characteristics and Its Causes of Global Evaporation Based on Multi-Reanalysis Datasets[D]. Lanzhou: Lanzhou University, 2016 (in Chinese). |
[33] |
LIU J, SONG M, HU Y, et al. Changes in the strength and width of the Hadley Circulation since 1871[J]. Climate of the Past, 2012, 8(4): 1169-1175, https://doi.org/10.5194/cp-8-1169-2012. |
[34] |
LIU X, LI W, WU G. Interannual variation of the diabatic heating over the Tibetan Plateau and the northern Hemispheric circulation in summer[J]. Acta Meteor Sin, 2002, 16(3): 267-277. http://en.cnki.com.cn/Article_en/CJFDTOTAL-QXXB200203001.htm |
[35] |
WU G, DUAN A, LIU Y, et al. Tibetan Plateau climate dynamics: recent research progress and outlook[J]. National Science Review, 2014, 2(1): 100-116, https://doi.org/10.1093/nsr/nwu045. |