[1] WANG X. Development of a toy column model and its application in testing cumulus convection parameterizations[J]. Science Bulletin, 2015, 60(15): 1359-1365, https://doi.org/10.1007/s11434-015-0850-8.
[2] GIORGI F, COPPOLA E, SOLMON F, et al. RegCM4: model description and preliminary tests over multiple CORDEX domains[J]. Climate Research, 2012, 52: 7-29, https://doi.org/10.3354/cr01018.
[3] HAN Z, ZHOU B, XU Y, et al. Projected changes in haze pollution potential in China: an ensemble of regional climate model simulations[J]. Atmos Chem Phys, 2017, 17(16): 10109-10123, https://doi.org/10.5194/acp-17-10109-2017.
[4] DU Yao-dong, YANG Hong-long, CAO Chao-xiong, et al. Future change of precipitation extremes over the Pearl River Basin from regional climate models[J]. J Trop Meteor, 2016, 24(1): 57-65, https://doi.org/10.16555/j.1006-8775.2016.01.007.
[5] GAO X, GIORGI F. Use of the RegCM system over East Asia: Review and perspectives[J]. Engineering, 2017, 3(5): 766-772, https://doi.org/10.1016/J.ENG.2017.05.019.
[6] ZOU L, ZHOU T, LIU H. Performance of a high resolution regional ocean-atmosphere coupled model over western North Pacific region: sensitivity to cumulus parameterizations[J]. Clim Dyn, 2019, 53(7): 4611-4627, https://doi.org/10.1007/s00382-019-04812-2.
[7] WU Jie, GAO Xue-jie. Simulation of tropical cyclones over the Western North Pacific and landfalling in China by RegCM4[J]. J Trop Meteor, 2019, 25(4): 437-447, https://doi/org/10.16555/j.1006-8775.2019.04.002. doi: 10.16555/j.1006-8775.2019.04.002
[8] MORRISON H, SHUPE M D, CURRY J A. Modeling clouds observed at SHEBA using a bulk microphysics parameterization implemented into a single-column model[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D8): 4255, https://doi.org/10.1029/2002JD002229.
[9] YANG J, SHEN X. The construction of SCM in GRAPESand its applications in two field experiment simulations[J]. Adv Atmos Sci, 2011, 28(3): 534-550, https://doi.org/10.1007/s00376-010-0062-8.
[10] HONG S-Y, PARK H, CHEONG H-B, et al. The Global/Regional Integrated Model system(GRIMs)[J]. AsiaPacific J Atmos Sci, 2013, 49(2): 219-243, https://doi.org/10.1007/s13143-013-0023-0.
[11] NEGGERS R A J, SIEBESMA A P, HEUS T. Continuous single-column model evaluation at a permanent meteorological supersite[J]. Bull Amer Meteorol Soc, 2012, 93(9): 1389-1400, https://doi.org/10.1175/BAMS-D-11-00162.1.
[12] DENG A, SEAMAN N L, KAIN J S. A shallowconvection parameterization for mesoscale models, Part Ⅰ: Submodel description and preliminary applications[J]. Journal of the Atmospheric Sciences, 2003, 60(1): 34-56, https://doi.org/10.1175/1520-0469(2003)060<0034:ASCPFM>2.0.CO;2. doi: 10.1175/1520-0469(2003)060<0034:ASCPFM>2.0.CO;2
[13] HACKER J P, SNYDER C. Ensemble Kalman filter assimilation of fixed screen-height observations in a parameterized PBL[J]. Mon Wea Rev, 2005, 133(11): 3260-3275, https://doi.org/10.1175/MWR3022.1.
[14] COHEN A E, CAVALLO S M, CONIGLIO M C, et al. Areview of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern US cold season severe weather environments[J]. Wea Forecasting, 2015, 30(3): 591-612, https://doi.org/10.1175/WAF-D-14-00105.1.
[15] WANG W, SHEN X, HUANG W. A comparison of boundary-layer characteristics simulated using different parametrization schemes[J]. Boundary Layer Meteorol, 2016, 161(2): 375-403, https://doi.org/10.1007/s10546-016-0175-4.
[16] BRETHERTON C S, PARK S. A new moist turbulence parameterization in the Community Atmosphere Model[J]. J Climate, 2009, 22(12): 3422-3448, https://doi.org/10.1175/2008JCLI2556.1.
[17] NOH Y, CHEON W G, HONG S Y, et al. Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data[J]. Boundary Layer Meteorol, 2003, 107(2): 401-427, https://doi.org/10.1023/A:1022146015946.
[18] SHIN H H, DUDHIA J. Evaluation of PBLparameterizations in WRF at subkilometer grid spacings: turbulence statistics in the dry convective boundary layer[J]. Mon Wea Rev, 2016, 144(3): 1161-1177, https://doi.org/10.1175/MWR-D-15-0208.1.
[19] STEVENS B, MOENG C-H, ACKERMAN A S, et al. Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus[J]. Mon Wea Rev, 2005, 133(6): 1443-1462, https://doi.org/10.1175/MWR2930.1.
[20] HOLTSLAG A A M, DE BRUIJN E I F, PAN H L. A high resolution air mass transformation model for short-range weather forecasting[J]. Mon Wea Rev, 1990, 118(8): 1561-1575, https://doi.org/10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2. doi: 10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2
[21] HOLTSLAG A A M, BOVILLE B A. Local versus nonlocal boundary-layer diffusion in a global climate model[J]. J Climate, 1993, 6(10): 1825-1842, https://doi.org/10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2. doi: 10.1175/1520-0442(1993)006<1825:LVNBLD>2.0.CO;2
[22] HONG S-Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon Wea Rev, 2006, 134(9): 2318-2341, https://doi.org/10.1175/MWR3199.1.
[23] HONG S Y. A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon[J]. Quart J Roy Meteorol Soc, 2010, 136(651): 1481-1496, https://doi.org/10.1002/qj.665.
[24] GRENIER H, BRETHERTON C S. A moist PBLparameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers[J]. Mon Wea Rev, 2001, 129(3): 357-377, https://doi.org/10.1175/1520-0493(2001)129<0357:AMPPFL>2.0.CO;2. doi: 10.1175/1520-0493(2001)129<0357:AMPPFL>2.0.CO;2
[25] BRETHERTON C S, MCCAA J R, GRENIER H. A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers, Part Ⅰ: Description and 1D results[J]. Mon Wea Rev, 2004, 132(4): 864-882, https://doi.org/10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2. doi: 10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2
[26] O'BRIEN T A, CHUANG P Y, SLOAN L C, et al. Coupling a new turbulence parametrization to RegCMadds realistic stratocumulus clouds[J]. Geosci Model Dev, 2012, 5(4): 989-1008, https://doi.org/10.5194/gmd-5-989-2012.
[27] DICKINSON R E, HENDERSON-SELLERS A, KENNEDY P. Biosphere-Atmosphere Transfer Scheme(BATS)version 1e as coupled to the NCAR Community Climate Model[R]. 1993, NCAR Tech Note NCAR/TN-387+STR, 72 pp, https://doi.org/10.5065/D67W6959.
[28] ZENG X, ZHAO M, DICKINSON R E. Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data[J]. J Climate, 1998, 11(10): 2628-2644, https://doi.org/10.1175/1520-0442(1998)011<2628:IOBAAF>2.0.CO;2. doi: 10.1175/1520-0442(1998)011<2628:IOBAAF>2.0.CO;2
[29] LEMONE M A, TEWARI M, CHEN F, et al. Objectively determined fair-weather CBL depths in the ARW-WRFmodel and their comparison to CASES-97 observations[J]. Mon Wea Rev, 2013, 141(1): 30-54, https://doi.org/10.1175/MWR-D-12-00106.1.
[30] GUTTLER I, BRANKOVIĆČ, O'BRIEN T A, et al. Sensitivity of the regional climate model RegCM4.2 to planetary boundary layer parameterization[J]. Clim Dyn, 2014, 43(7-8): 1753-1772, https://doi.org/10.1007/s00382-013-2003-6.
[31] LI D. Turbulent Prandtl number in the atmospheric boundary layer-where are we now?[J]. Atmos Res, 2019, 216: 86-105, https://doi.org/10.1016/j.atmosres.2018.09.015.