[1] QIU J. China: The third pole[J]. Nature. 2008, 454(24): 393-396, https://doi.org/10.1038/454393a.
[2] GAO Y H, CUO L, ZHANG Y X. Changes in moisture flux over the Tibetan Plateau during 1979-2011 and possible mechanisms[J]. Journal of Climate, 2014, 27(5): 1876- 1893, https://doi.org/10.1175/JCLI-D-13-00321.1.
[3] CHENG Guo-dong, JIN Hui-jun. Groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes[J]. Hydrogeology and Engineering Geology (in Chinese), 2013, 40(1): 1-11, https://doi.org/10.16030/j.cnki.issn.1000-3665.2013.01.017.
[4] ZHENG Ran. Climate Changes Under Global Warming and Its Influence on Desertification over the Qinghai-Tibet Plateau[D]. Nanjing: Nanjing University of Information Science & Technology, 2015(in Chinese).
[5] SHEN M, PIAO S, JEONG S, et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(30): 9299-9304, https://doi.org/10.1073/pnas.1504418112.
[6] CMA. Climate Change Centre Blue Book on Climate Change in China (2020)[M]. Beijing: Science Press, 2020.
[7] SHEN M, PIAO S, CONG N, et al. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau[J]. Global Change Biology, 2015, 21(10): 3647-3656, https://doi.org/10.1111/gcb.12961.
[8] YU Bo-hua, LV Chang-he, LV Ting-ting, et al. Regional differentiation of vegetation change in the Qinghai-Tibet Plateau[J]. Progress in Geography (in Chinese), 2009, 28 (3): 391-397, https://doi.org/10.11820/dlkxjz.2009.03.010.
[9] LI Wen-hua. An overview of ecological research conducted on the Qinghai-Tibetan Plateau[J]. Journal of Resources and Ecology, 2017, 8(1): 1-4, https://doi.org/10.5814/j.issn.1674-764x.2017.01.001.
[10] DING Ming-Jun, ZHANG Yi-Li, SUN Xiao-Min, et al. Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009[J]. Chinese Science Bulletin, 2013, 58(3): 396-405, https://doi.org/10.1007/s11434-012-5407-5.
[11] PIAO Shi-long, ZHANG Xian-zhou, WANG Tao, et al. Responses and feedback of the Tibetan Plateau's alpine ecosystem to climate change[J]. Chinese Science Bulletin (in Chinese), 2019, 64(27): 2842-2855, https://doi.org/10.1360/TB-2019-0074.
[12] HAN Bing-hong, ZHOU Bing-rong, YAN Yu-qian, et al. Analysis of vegetation coverage change and its driving factors over Tibetan Plateau from 2000 to 2008[J]. Acta Agrestia Sinica (in Chinese), 2019, 27(6): 1651-1658, https://doi.org/10.11733/j.issn.1007-0435.2019.06.023.
[13] ZHUO Ga, CHEN Si-rong, ZHOU Bing. Spatio-temporal variation of vegetation coverage over the Tibetan Plateau and its responses to climatic factors[J]. Acta Ecologica Sinica, 2018, 38(9): 3208-3218, https://doi.org/10.5846/stxb201705270985.
[14] SHEN M, PIAO S, CONG N, et al. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau [J]. Global Change Biology, 2015, 21(10): 3647-3656, https://doi.org/10.1111/gcb.12961.
[15] LIU Q, FU Y, ZENG Z, et al. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China[J]. Global Change Biology, 2016, 22(2): 644-655, https://doi.org/10.1111/gcb.13081.
[16] ZHANG H, CHUINE I, REGNIER P, et al. Deciphering the multiple effects of climate warming on the temporal shift of leaf unfolding[J]. Nature Climate Change, 2022, 12:193-199, https://doi.org/10.1038/s41558-021-01261-w.
[17] SHEN M, ZHANG G, CONG N, et al. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai-Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2014, 180-189:70- 81, https://doi.org/10.1016/j.agrformet.2014.01.003.
[18] LI R, LUO T, MÖLG T, et al. Leaf unfolding of Tibetan alpine meadows captures the arrival of monsoon rainfall [J]. Scientific Reports, 2016, 6:20985, https://doi.org/10.1038/srep20985.
[19] WANG Y, CASE B, LU X, et al. Fire facilitates warminginduced upward shifts of alpine treelines by altering interspecific interactions[J]. Trees, 2019, 33:1051-1061, https://doi.org/10.1007/s00468-019-01841-6.
[20] YANG K, WU H, QIN J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J]. Global and Planetary Change, 2014, 112:79-91, https://doi.org/10.1016/j.gloplacha.2013.12.001.
[21] ZHANG C, TANG Q, CHEN D, et al. Moisture source changes contributed to different precipitation changes over the northern and southern Tibetan Plateau[J]. Journal of hydrometeorology, 2019, 20(2): 217-229, https://doi.org/10.1175/JHM-D-18-0094.1.
[22] KUMMEROW C, BARNES W, KOZU T, et al. The Tropical Rainfall Measuring Mission (TRMM) sensor package[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15(3): 809-817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2. doi: 10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2
[23] HUFFMAN G J, ADLER R F, BOLVIN D T, et al. The trmm multi-satellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale[J]. Journal of Hydrometeorology, 2007, 8:33- 55, https://doi.org/10.1175/JHM560.1.
[24] HUFFMAN G J, ADLER R F, BOLVIN D T, et al. The TRMM Multi-Satellite Precipitation Analysis (TMPA) [M]//GEBREMICHAEL M, HOSSAIN F (eds), Satellite Rainfall Applications for Surface Hydrology. Dordrecht: Springer, 2010.
[25] FANG J, YANG W, LUAN Y, et al. Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China[J]. Atmospheric Research, 2019, 223:24-38, https://doi.org/10.1016/j.atmosres.2019.03.001.
[26] YONG B, REN L, YANG H, et al. First evaluation of the climatological calibration algorithm in the real-time TMPA precipitation estimates over two basins at high and low latitudes[J]. Water Resources Research, 2013, 49(5): 2461-2472, https://doi.org/10.1002/wrcr.20246.
[27] CHEN Y, EBERT E E, WALSH K J E, et al. Evaluation of TRMM 3B42 precipitation estimates of tropical cyclone rainfall using PACRAIN data[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(5): 2184-2196, https://doi.org/10.1002/jgrd.50250.
[28] BALLARI D, CASTRO E, CAMPOZANO L. Validation of satellite precipitation (TRMM 3B43) in Ecuadorian coastal plains, Andean highlands and Amazonian rainforest[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B8:305-311, https://doi.org/10.5194/isprsarchives-XLI-B8-305-2016.
[29] AS-SYAKUR A R, IMAOKA K, OGAWARA K, et al. Analysis of spatial and seasonal differences in the diurnal rainfall cycle over Sumatera revealed by 17-year TRMM 3B42 dataset[J]. Scientific Online Letters on the Atmosphere, 2019, 15:216-221, https://doi.org/10.2151/sola.2019-039.
[30] TAREK M H, HASSAN A, BHATTACHARJEE J, et al. Assessment of TRMM data for precipitation measurement in Bangladesh[J]. Meteorological Applications, 2017, 24 (3): 349-359, https://doi.org/10.1002/met.1633.
[31] CHEN J M, BLACK T A. Defining leaf area index for non-flat leaves[J]. Plant, Cell and Environment, 1992, 15 (4): 421-429, https://doi.org/10.1111/j.1365-3040.1992.tb00992.x.
[32] KNYAZIKHIN Y, GLASSY J, PRIVETTE J L, et al. MODIS Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation Absorbed by Vegetation (FPAR) Product (MOD15) Algorithm Theoretical Basis Document[Z]. https://modis.gsfc.nasa.gov/data/atbd/atbd_mod15.pdf, 1999-04-30.
[33] XU Xiang-de. Technique and Principle of Reanalysis Field Structure in Atmospheric Remote Sensing[M]. China Meteorological Press, 2013(in Chinese).
[34] WENG Yong-hui, XU Xiang-de. Numerical simulation over the Tibetan Plateau by using variational technique revised TOVS data[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 1999, 23(6): 703-712, https://doi.org/10.3878/j.issn.1006-9895.1999.06.07.
[35] CHENG Xing-hong, XU Xiang-de, CHAN Chuen-yu, et al. Integrated Analysis on Spatial Distribution Characteristics of PM10 Concentration Based upon Variational Processing Method in Beijing[J]. Journal of Applied Meteorological Science (in Chinese), 2017, 18 (2): 165-17, https://doi.org/10.1002/jrs.1570.
[36] CHENG Xing-hong, XU Xiang-de, ZHANG Sheng-jun, et al. Integrated analysis on unsymmetrical space distribution characteristics of urban heat island based on variational processing method in Beijing[J]. Climatic and Environmental Research (in Chinese), 2007, 12(5): 683- 692, https://doi.org/10.3969/j.issn.1006-9585.2007.05.011
[37] BAI Jing-yu, XU Xiang-de, LIU Rui-yun. The application of verified clear sky TBB data in the soil temperature study of Tibetan Plateau[J]. Chinese Journal of Computational Physics (in Chinese), 2011, 18(4): 298- 302, https://doi.org/10.3969/j.issn.1001-246X.2001.04.002.
[38] CONG N, WANG T, NAN H, et al. Changes in satellitederived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010:A multimethod analysis[J]. Global Change Biology, 2013, 19(3): 881- 891, https://doi.org/10.1111/gcb.12077.
[39] SHEN M, TANG Y, CHEN J, et al. Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2011, 151(12): 1711-1722, https://doi.org/10.1016/j.agrformet.2011.07.003.
[40] SHEN M, PIAO S, CHEN X, et al. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau[J]. Global Change Biology, 2016, 22(9): 3057-3066, https://doi.org/10.1111/gcb.13301.
[41] XU X, TAO S, WANG J, et al. The relationship between water vapor transport features of tibetan plateau-monsoon large triangle"affecting region and drought-flood abnormality of china[J]. Acta Meteorologica Sinica, 2002, 60(3): 257-266, https://doi.org/10.3321/j.issn:0577-6619.2002.03.001.
[42] XU X, ZHAO T, LU C, et al. An important mechanism sustaining the atmospheric "water tower" over the Tibetan Plateau[J]. Atmospheric Chemistry Physics, 2014, 14:11287-11295, https://doi.org/10.5194/acp-14-11287-2014.
[43] XU X, LU C, SHI X, et al. World water tower: An atmospheric perspective[J]. Geophysical Research Letters, 2008, 35:L20815, https://doi.org/10.1029/2008GL035867.