[1] BAUER P, THORPE A, BRUNET G. The quiet revolution of numerical weather prediction[J]. Nature, 2015, 525: 47- 55, https://doi.org/10.1038/nature14956.
[2] LEUTBECHER M, LOCK S J, OLLINAHO P, et al. Stochastic representations of model uncertainties at ECMWF: State of the art and future vision[J]. Quarterly Journal of the Royal Meteorological Society, 2017, 143 (707): 2315-2339, https://doi.org/10.1002/qj.3094.
[3] DIAS J, GEHNE M, KILADIS G N, et al. Equatorial waves and the skill of NCEP and ECMWF numerical weather prediction systems[J]. Monthly Weather Review, 2018, 146(6): 1763-1784, https://doi.org/10.1175/MWR-D-17-0362.1.
[4] XUE J S, LIU Y. Numerical weather prediction in China in the new century-Progress, problems and prospects[J]. Advances in Atmospheric Sciences, 2007, 24:1099-1108, https://doi.org/10.1007/s00376-007-1099-1.
[5] SUBRAMANIAN A, JURICKE S, DUEBEN P, et al. A stochastic representation of subgrid uncertainty for dynamical core development[J]. Bulletin of the American Meteorological Society, 2019, 100(6): 1091-1101, https://doi.org/10.1175/BAMS-D-17-0040.1.
[6] ZHANG Xu-bin, WAN Qi-lin, XUE Ji-shan, et al. The impact of different physical processes and their parameterizations on forecast of a heavy rainfall in south China in annually first raining season[J]. Journal of Tropical Meteorology, 2015, 21(2):194-210.
[7] BENTZIEN S, FRIEDERICHS P. Generating and calibrating probabilistic quantitative precipitation forecasts from the high-resolution NWP model CosMO-DE[J]. Weather and Forecasting, 2012, 27(4): 998-1002, https://doi.org/10.1175/WAF-D-11-00101.1.
[8] VOLOSCIUK C, MARAUN D, VRAC M, et al. A combined statistical bias correction and stochastic downscaling method for precipitation[J]. Hydrology and Earth System Sciences, 2017, 21(3): 1693-1719, https://doi.org/10.5194/hess-21-1693-2017.
[9] MENDEZ M, MAATHUIS B, HEIN-GRIGGS D, et al. Performance evaluation of bias correction methods for climate change monthly precipitation projections over Costa Rica[J]. Water, 2020, 12(2): 482, https://doi.org/10.3390/w12020482.
[10] ZHU Yue-Jian, LUO Yan. Precipitation calibration based on the frequency-matching Method[J]. Weather and Forecasting, 2015, 30(5): 1109-1124, https://doi.org/10.1175/WAF-D-13-00049.1.
[11] HAMILL T M, SCHEUERER M, BATES G T. Analog probabilistic precipitation forecasts using GEFS reforecasts and climatology-calibrated precipitation analyses[J]. Monthly Weather Review, 2015, 143(8): 3300-3309, https://doi.org/10.1175/MWR-D-15-0004.1.
[12] WOODCOCK F, ENGEL C. Operational consensus forecasts[J]. Weather and Forecasting, 2005, 20(1): 101- 111, https://doi.org/10.1175/WAF-831.1.
[13] TARTAGLIONE N, MARIANI S, CASAIOLI M, et al. Location errors in QPFs over the Calabria region: Does a multi-model poor man's ensemble over-perform each member?[J]. Atmospheric Research, 2009, 94(4): 736- 742, https://doi.org/10.1016/j.atmosres.2009.03.003.
[14] EBERT E E, TURK M, KUSSELSON S J, et al. Ensemble tropical rainfall potential (eTRaP) forecasts[J]. Weather and Forecasting, 2011, 26(2): 213-224, https://doi.org/10.1175/2010WAF2222443.1.
[15] KUMAR A, MITRA A K, BOHRA A K, et al. Multimodel ensemble (MME) prediction of rainfall using neural networks during monsoon season in India[J]. Meteorological Applications, 2012, 19(2): 161-169, https://doi.org/10.1002/met.254.
[16] SUKOVICH E M,RALPH F M,BARTHOLD F E,et al. Extreme quantitative precipitation forecast performance at the Weather Prediction Center from 2001 to 2011[J]. Weather and Forecasting,2014,29(4):894-911,https://doi.org/10.1175/WAF-D-13-00061.1.
[17] DAI Kan, CAO Yong, QIAN Qi-feng, et al. Situation and tendency of operational technologies in short and medium range weather forecast[J]. Meteorological Monthly (in Chinese), 2016, 42(12): 1445-1455, https://doi.org/10.7519/j.issn.1000-0526.2016.12.002.
[18] EBERT E E. Ability of a poor man's ensemble to predict the probability and distribution of precipitation[J]. Monthly Weather Review, 2001, 129(10): 2461-2480, https://doi.org/10.1175/1520-0493(2001)1292.0.CO;2
[19] LIU Jin-qing, LI Zi-liang, WANG Qiong-qun. Quantitative precipitation forecasting using an improved probability-matching method and its application to a typhoon event[J]. Atmosphere, 2021, 12(10): 1346, https://doi.org/10.3390/atmos12101346.
[20] GAGNE D J, MCGOVERN A, XUE M. Machine learning enhancement of storm-scale ensemble probabilistic quantitative precipitation forecasts[J]. Weather and Forecasting, 2014, 29(4): 1024-1043, https://doi.org/10.1175/WAF-D-13-00108.1.
[21] RASP S, LERCH S. Neural networks for postprocessing ensemble weather forecasts[J]. Monthly Weather Review, 2018, 146(11): 3885-3900, https://doi.org/10.1175/MWRD-18-0187.1.
[22] HERMAN G R, SCHUMACHER R S. Money doesn't grow on trees, but forecasts do: Forecasting extreme precipitation with random forests[J]. Monthly Weather Review, 2018, 146(5): 1571-1600, https://doi.org/10.1175/MWR-D-17-0250.1.
[23] ZHOU Kang-hui, ZHENG Yong-guang, LI Bo, et al. Forecasting different types of convective weather: a deep learning approach[J]. Journal of Meteorological Research, 2019, 33(5): 797-809, https://doi.org/10.1007/s13351-019-8162-6
[24] CHATTOPADHYAY A, NABIZADEH E, HASSANZADEH P. Analog forecasting of extremecausing weather patterns using deep learning[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(2): e2019MS001958, https://doi.org/10.1029/2019MS001958.
[25] XIA Jiang-jiang, LI Hao-chen, KANG Yan-yan, et al. Machine learning-based weather support for the 2022 Winter Olympics[J]. Advances in Atmospheric Sciences, 2020, 37: 927-932, https://doi.org/10.1007/s00376-020-0043-5.
[26] HAN Lei, CHEN Ming-xuan, CHEN Kang-kai, et al. A deep learning method for bias correction of ECMWF 24-240 h forecasts[J]. Advances in Atmospheric Sciences, 2021, 38(9): 1444-1459, https://doi.org/10.1007/s00376-021-0215-y.
[27] NAGASELVI M, DEEPA T. Weather forecasting using Deep Feed Forward Neural Network (DFFNN) and fuzzy outlier removal[J]. Journal on Science Engineering & Technology, 2015, 2: 215-225.
[28] REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for datadriven Earth system science[J]. Nature, 2019, 566(7743): 195-204, https://doi.org/10.1038/s41586-019-0912-1.
[29] CHEN Lei, CAO Yuan, MA Lei-ming, et al. A deep learning-based methodology for precipitation nowcasting with radar[J]. Earth and Space Science, 2020, 7(2): e2019EA000812, https://doi.org/10.1029/2019EA000812.
[30] YUAN Hui-ling, GAO Xiao-gang, MULLEN S L, et al. Calibration of probabilistic quantitative precipitation forecasts with an artificial neural network[J]. Weather and Forecasting, 2007, 22(6): 1287-1303, https://doi.org/10.1175/2007WAF2006114.1.
[31] SCHER S, MESSORI G. Predicting weather forecast uncertainty with machine learning[J]. Quarterly Journal of the Royal Meteorological Society, 2018, 144(717): 2830-2841, https://doi.org/10.1002/qj.3410.
[32] ZHANG Peng-cheng, CAO Wen-nan, LI Wen-rui. Surface and high-altitude combined rainfall forecasting using convolutional neural network[J]. Peer-to-Peer Networking and Applications, 2021, 14(3): 1765-1777, https://doi.org/10.1007/s12083-020-00938-x.
[33] MARAUN D, SHEPHERD T G, WIDMANN M, et al. Towards process-informed bias correction of climate change simulations[J]. Nature Climate Change, 2017, 7 (11): 764-773, https://doi.org/10.1038/nclimate3418
[34] ZHONG Shui-xin, CHEN Zi-tong, WANG Gang, et al. Improved forecasting of cold air outbreaks over southern China through orographic gravity wave drag parameterization[J]. Journal of Tropical Meteorology, 2016, 22(4):522-534, https://doi.org/10.16555/j.1006-8775.2016.04.007.
[35] ZHONG Shui-xin, CHEN Zi-tong, XU Dao-sheng, et al. A review on GRAPES-TMM operational model system at Guangzhou Regional Meteorological Center[J]. Journal of Tropical Meteorology, 2020, 26(4): 495-504, https://doi.org/10.46267/j.1006-8775.2020.043.
[36] SUN Chao, HUO qing, REN Zhi-hua, et al. Design and implementation of surface meteorological data statistical processing system[J]. Journal of Applied Meteorological Science (in Chinese), 2018, 29(5): 630-640, https://doi.org/10.11898/1001-7313.20180511.
[37] WU Qi-shu, HAN Mei, LIU Ming, et al. A comparison of optimal-score-based correction algorithms of model precipitation prediction[J]. Journal of Applied Meteorological Science (in Chinese), 2017, 28(3): 306-317, https://doi.org/10.11898/1001-7313.20170305.
[38] WU Ya-li, CHEN De-hui. On use of LHN method to assimilate the intensified surface precipitations for GRAPES_MESO model initialization[J]. Journal of Tropical Meteorology, 2016, 22(4): 544-558, https://doi.org/10.16555/j.1006-8775.2016.04.009.
[39] KINGMA D P, BA J. Adam: A Method for Stochastic Optimization[J]. arXiv preprint arXiv: 1412.6980, 2014.
[40] IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[J]. arXiv preprint arXiv: 1502.03167, 2015.
[41] HINTON G E, OSINDERO S, TEH Y W. A fast-learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554, https://doi.org/10.1162/neco.2006.18.7.1527.