[1] TAO S. The Heavy Rainfalls in China[M]. China Science Press, 1980: 255pp (in Chinese).
[2] LU J. The Conspectus of Southwest Vortex[M]. China Meteorological Press, 1986: 275pp (in Chinese).
[3] KUO Y, CHENG L, ANTHE R. Mesoscale analyses of the Sichuan flood catastrophe 11-15 July 1981[J]. Mon Wea Rev, 1986, 114: 1984-2003, https://doi.org/10.1175/1520-0493(1986)114<1984:MAOTSF>2.0.CO;2. doi: 10.1175/1520-0493(1986)114<1984:MAOTSF>2.0.CO;2
[4] GAO Z, WANG X, LI W. The statistic characteristics of southwest China vortex and its effect on precipitation of Hubei province[J]. Torrential Rain and Disasters, 2009, 28: 16-26 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HBQX200904003.htm
[5] ZHOU H, CUI Y, HU J, et al. Validation of 2008 heavy rain events over the Yangtze River Basin forecast by T639 model[J]. Meteorological Monthly, 2010, 36: 60-67 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QXXX201009013.htm
[6] ZHAI D, ZHANG Y, QIU P, et al. Hydrometeorological analysis of two flood events in Qiongjiang river basin[J]. Meteorological Monthly, 2015, 41: 59-67 (in Chinese). http://www.cqvip.com/main/zcps.aspx?c=1&id=1005693107
[7] CHEN Z, XU M, MIN W. Relationship between abnormal activities of Southwest vortex and heavy rain the upper reach of Yangtze River during summer of 1998[J]. Plateau Meteorology, 2003, 22: 162-167 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-GYQX200302010.htm
[8] ZHAI D, LIU D, LI Q, et al. Feature analysis of Southwest Vortex causing heavy rain in western and middle Chongqing[J]. Plateau Meteorology, 2014, 33(1): 140-147 (in Chinese).
[9] Institute of Plateau Meteorology, China Meteorological Administration and Plateau Meteorological Committee, China Meteorological Society. The 2012's Annals of Southwest Vortex[M]. China Science Press, 2003 (in Chinese).
[10] Institute of Plateau Meteorology, China Meteorological Administration and Plateau Meteorological Committee, China Meteorological Society. The 2013's Annals of Southwest Vortex[M]. China Science Press, 2014 (in Chinese).
[11] Institute of Plateau Meteorology, China Meteorological Administration and Plateau Meteorological Committee, China Meteorological Society. The 2014's Annals of Southwest Vortex[M]. China Science Press, 2015 (in Chinese).
[12] Institute of Plateau Meteorology, China Meteorological Administration and Plateau Meteorological Committee, China Meteorological Society. The 2015's Annals of Southwest Vortex[M]. China Science Press, 2017 (in Chinese).
[13] Institute of Plateau Meteorology, China Meteorological Administration and Plateau Meteorological Committee, China Meteorological Society. The 2016's Annals of Southwest Vortex[M]. China Science Press, 2018 (in Chinese).
[14] SUN J, DENG G, ZHANG Y, et al. Primary study of the extreme rainfall event in Suining City on 30 June 2013 [J]. Meteorological Monthly, 2013, 40: 1174-1182 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QXXX201410002.htm
[15] CHEN Z. The dynamic analyses of the effect of largescale environment flow fields and cumulus on the development of sub-synoptic scale southwest vortex[J]. Plateau Meteorology, 1988, 38: 27-38 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-GYQX198801003.htm
[16] HE G. Review of the Southwest vortex research[J]. Meteorological Monthly, 2012, 38: 155-163 (in Chinese). http://d.wanfangdata.com.cn/Periodical_qx201202004.aspx
[17] FENG X, LIU C, RASMUSSEN R, et al. A 10-yr Climatology of Tibetan Plateau Vortices with NCEP Climate Forecast System Reanalysis[J]. J Applied Meteorological and Climatology, 2014, 53: 34-46, https://doi.org/10.1175/JAMC-D-13-014.1.
[18] FENG X, LIU C, FAN G, et al. Climatology and structures of southwest vortices in the NCEP climate forecast system reanalysis[J]. J Climate, 2016, 29(21): 7675-7701, https://doi.org/10.1175/JCLI-D-15-0813.1.
[19] ZHONG R, ZHONG L, HUA L, et al. A climatology of the southwest vortex during 1979-2008[J]. Atmos Oce Sci Lett, 2014, 7(6): 577-583, https://doi.org/10.3878/AOSL20140042.
[20] TAO S, DING Y. Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China[J]. Bull Amer Meteor Soc, 1981, 62(1): 23-30, https://doi.org/10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2. doi: 10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2
[21] ZHAO Y, WANG Y. A case study on plateau vortex inducing Southwest vortex and producing extremely heavy rain[J]. Plateau Meteorology, 2010, 29: 819-831 (in Chinese). http://www.oalib.com/paper/1581606
[22] WANG Z, GAO K, ZHAI G. A mesoscale numerical simulation of low level jet related with the Southwest vortex[J]. Chinese Journal of Atmospheric Sciences, 2003, 27: 75-85 (in Chinese). http://www.oalib.com/paper/1556543
[23] ZOU B, CHEN Z. Mesoscale analysis on the formation and development of Southwest vortex during 8-10 July 1989[J]. Plateau Meteorology, 2000, 19: 141-149 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GYQX200002001.htm
[24] WANG W, KUO Y, WARNER T T. A diabatically driven mesoscale vortex in the lee of the Tibetan Plateau[J]. Mon Wea Rev, 1993, 121(9): 2542-2561, https://doi.org/10.1175/1520-0493(1993)121<2542:ADDMVI>2.0.CO;2. doi: 10.1175/1520-0493(1993)121<2542:ADDMVI>2.0.CO;2
[25] CHEN G, CHEN Y, ZHANG Y, et al. Causes analysis of the southwest vortex extremely heavy rainfall on 21 July 2012[J]. Meteor Mon, 2012, 39(12): 1529-1541 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QXXX201312001.htm
[26] LIU T, MIAO C, ZHANG Y, et al. Application of doppler radar wind field retrieval technique to southwest vortex rainstorm process[J]. Meteor Mon, 2014, 39(12): 1529-1541 (in Chinese). http://search.cnki.net/down/default.aspx?filename=QXXX201412012&dbcode=CJFD&year=2014&dflag=pdfdown
[27] DENG C, ZHAO Y, MU R, et al. Evolution features of MCS during a torrential rain caused by southwest vortex [J]. Meteorological Science and Technology, 2018, 46(1): 121-128 (in Chinese). http://www.zhangqiaokeyan.com/academic-journal-cn_meteorological-science-technology_thesis/0201254077869.html
[28] ZHOU M, LIU L, WANG H. Analysis of the echo structure and its evolution as shown in a severe precipitation event caused by the plateau vortex and the southwest vortex[J]. Acta Meteorologica Sinica, 2014, 72 (3): 554-569 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QXXB201403010.htm
[29] LU P, LI Y, ZHENG W, et al. Analysis and numerical simulation of southwest vortex on continuous heavy rain processes in South China[J]. Plateau Meteorology, 2014, 33(6): 1457-1467 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-GYQX201406001.htm
[30] GRAY W M. The formation of tropical cyclones[J]. Meteor Atmos Phys, 1998, 67: 37-69, https://doi.org/10.1007/BF01277501.
[31] HENDRICKS E A, MONTGOMERY M T, DAVIS C A. The role of"vortical"hot towers in the formation of Tropical Cyclone Diana (1984)[J]. J Atmos Sci, 2004, 61 (11): 1209-1232, https://doi.org/10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2. doi: 10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2
[32] MONTGOMERY M T, NICHOLLS M E, CRAM T A, et al. A vortical hot tower route to tropical cyclogenesis[J]. J Atmos Sci, 2006, 63(1): 355-386, https://doi.org/10.1175/JAS3604.1.
[33] ZHANG W, CUI X, WANG A, et al. Numerical simulation of hot towers during pre-genesis stage of typhoon Durian (2001)[J]. J Trop Meteorol, 2008, 32, 619-630 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RDQX200806006.htm
[34] FANG J, ZHANG F. Evolution of multi-scale vortices in the development of Hurricane Dolly (2008)[J]. J Atmos Sci, 2011, 68(1): 103-122, https://doi.org/10.1175/2010JAS3522.1.
[35] ZHANG F, SIPPEL J A. Effects of moist convection on hurricane predictability[J]. J Atmos Sci, 2009, 66(7): 1944-1961, https://doi.org/10.1175/2009JAS2824.1.
[36] FUDEYASU H, WANG Y. The multiscale interaction in the life cycle of a tropical cyclone simulated in a global cloud-system-resolving model, Part ⅡP system-scale and mesoscale processes[J]. Mon Wea Rev, 2010, 138(12): 4305-4327, https://doi.org/10.1175/2010MWR3475.1.
[37] ZHANG D, BAO N. Oceanic cyclogenesis as induced by a mesoscale convective system moving offshore, Part Ⅱ Parenesis and thermodynamic transformation[J]. Mon Wea Rev, 124(10): 2206-2225, https://doi.org/10.1175/1520-0493(1996)124<2206:OCAIBA>2.0.CO;2. doi: 10.1175/1520-0493(1996)124<2206:OCAIBA>2.0.CO;2
[38] ZHANG W, CUI X, DONG J. The role of middle tropospheric mesoscale convective vortex in the genesis of typhoon Durian (2001) -Diagnostic analysis of simulated data[J]. Chinese Journal of Atmospheric Sciences, 2010, 34(1): 45-57 (in Chinese).
[39] LIN Y, ZHANG F. Tracing mesoscale gravity waves in baroclinic jet-front systems[J]. J Atmos Sci, 2008, 65(7): 2402-2415, https://doi.org/10.1175/2007JAS2482.1.
[40] TRAPP R J, WEISMAN M L. Low-level mesovortices within squall lines and bow echoes, Part Ⅱ: their genesis and implications[J]. Mon Wea Rev, 2003, 131(11): 2804-2823, https://doi.org/10.1175/1520-0493(2003)131<2804: LMWSLA>2.0.CO;2. doi: 10.1175/1520-0493(2003)131<2804:LMWSLA>2.0.CO;2