[1] |
AMENGUAL A, ROMERO R, GÓMEZ M, et al. A hydrometeorological modeling study of a flash-flood event over Catalonia, Spain[J]. J Hydro, 2007, 8(3): 282-303, https://doi.org/10.1175/JHM577.1. |
[2] |
XUE M, DROEGEMEIER K K, WONG V. The Advanced Regional Prediction System (ARPS) - A multi-scale nonhydrostatic atmospheric simulation and prediction model, Part Ⅰ: Model dynamics and verification[J]. Meteorol Atmos Phys, 2000, 75(3-4): 161-193, https://doi.org/10.1007/s007030070003. |
[3] |
SKAMAROCK W C, KLEMP J B, DUDHIA J, et al. A description of the advanced research WRF version 3, NCAR Technical Note[R]. Boulder: National Center for Atmospheric Research, 2008. |
[4] |
CHEN D, XUE J, YANG X, et al. New generation of multi-scale NWP system (GRAPES): general scientific design [J]. Chin Sci Bull, 2008, 53(22): 3433-3445, http://doi.org/10.1007/s11434-008-0494-z. |
[5] |
ZHONG S X, YANG S, GUO C Y, et al. Capabilities and limitations of GRAPES simulations of extreme precipitation in the warm sector over a complex orography [J]. J Trop Meteor, 2019, 25(2): 180-191, https://doi.org/10.16555/j.1006-8775.2019.02.005. |
[6] |
ZHONG S X, CHEN Z T, XU D S, et al. Evaluating and improving wind forecasts over South China: The role of orographic parameterization in the GRAPES model[J]. Adv Atmos Sci, 2018, 35(6): 713-722, https://doi.org/10.1007/s00376-017-7157-4. |
[7] |
KUMAR P, KISHTAWAL C M, PAL P K. Impact of ECMWF, NCEP, and NCMRWF global model analysis on the WRF model forecast over Indian Region[J]. Theor Appl Climatol, 2017, 127(1-2): 143-151, https://doi.org/10.1007/s00704-015-1629-1. |
[8] |
NEWMAN M, SARDESHMUKH P D, BERGMAN J W. An assessment of the NCEP, NASA, and ECMWF reanalyses over the tropical west Pacific warm pool[J]. Bull Amer Meteor Soc, 2000, 81(1): 41-48, https://doi.org/10.1175/1520-0477(2000)081 < 0041:AAOTNN > 2.3.CO; 2 doi: 10.1175/1520-0477(2000)081<0041:AAOTNN>2.3.CO;2 |
[9] |
BUIZZA R, HOUTEKAMER P L, PELLERIN G, et al. A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems[J]. Mon Wea Rev, 2005, 133 (5): 1076-1097, https://doi.org/10.1175/MWR2905.1. |
[10] |
DUAN M, MA J, WANG P. Preliminary comparison of the CMA, ECMWF, NCEP, and JMA ensemble prediction systems[J]. Acta Meteor Sinica, 2012, 26(1): 26-40, https://doi.org/10.1007/s13351-012-0103-6. |
[11] |
KUMAR P, KISHTAWAL C M, PAL P K. Skill of regional and global model forecast over Indian region[J]. Theor Appl Climatol, 2016, 123(3-4): 629-636, https://doi.org/10.1007/s00704-014-1361-2. |
[12] |
HONG S Y, PAN H L. Nonlocal boundary layer vertical diffusion in a medium-range forecast model[J]. Mon Wea Rev, 1996, 124(10): 2322-2339, https://doi.org/10.1175/1520-0493(1996)124 < 2322:NBLVDI > 2.0.CO; 2. doi: 10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2 |
[13] |
HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon Wea Rev, 2006, 134(9): 2318-2341, https://doi.org/10.1175/MWR3199.1. |
[14] |
ZHONG S X, CHEN Z T. Improved wind and precipitation forecasts over South China using a modified orographic drag parameterization scheme[J]. J Meteor Res, 2015, 29(1): 132-143, https://doi.org/10.1007/s13351-014-4934-1. |
[15] |
VERLINDEN K L, de SZOEKE S P. Simulating radiative fluxes through southeastern Pacific stratocumulus clouds during VOCALS-Rex[J]. J Atmos Oceanic Tech, 2018, 35 (4):821-836, https://doi.org/10.1175/JTECH-D-17-0169.1. |
[16] |
MUKKAVILLI S K, PRASAD A A, TAYLOR R A, et al. Mesoscale simulations of Australian direct normal irradiance, featuring an extreme dust event[J]. J Appl Meteor, 2018, 57(3): 493-515, https://doi.org/10.1175/JAMC-D-17-0091.1. |
[17] |
XIAO Q, SUN J. Multiple-radar data assimilation and short-range quantitative precipitation forecasting of a squall line observed during IHOP_2002[J]. Mon Wea Rev, 2007, 135(10): 3381-3404, https://doi.org/10.1175/MWR3471.1. |
[18] |
ZHANG F, ZHANG M, HANSEN J A. Coupling ensemble Kalman filter with four-dimensional variational data assimilation[J]. Adv Atmos Sci, 2009, 26(1): 1-8, https://doi.org/10.1007/s00376-009-0001-8. |
[19] |
JANG J, HONG S Y. Quantitative forecast experiment of a heavy rainfall event over Korea in a global model: Horizontal resolution versus lead time issues[J]. Meteorol Atmos Phys, 2014, 124(3-4): 113-127, https://doi.org/10.1007/s00703-014-0312-x. |
[20] |
RAKESH V, SINGH R, PAL P K, et al. Impacts of satellite-observed winds and total precipitable water on WRF short-range forecasts over the Indian Region during the 2006 summer monsoon[J]. Wea Forecasting, 2009, 24(6): 1706-1731, https://doi.org/10.1175/2009WAF2222242.1. |
[21] |
YANG Mei-jin, GONG Jian-dong, WANG Rui-chun, et al. A comparison of the blending and constraining methods to introduce large-scale information into GRAPES mesoscale analysis[J]. J Trop Meteor, 2019, 25(2): 227-244, https://doi.org/10.16555/j.1006-8775.2019.02.009. |
[22] |
CHEN J H, LIN S J, MAGNUSSON L, et al. Advancements in hurricane prediction with NOAA's next-generation forecast system[J]. Geophys Res Lett, 2019, 46(8): 4495-4501, https://doi.org/10.1029/2019GL082410. |