[1] GAO S, LI X. Responses of tropical deep convective precipitation systems and their associated convective and stratiform regions to the large-scale forcing [J]. Quart J Roy Meteorol Soc, 2008, 134(637): 2 127-2 141.
[2] HOUGHTON H G. On precipitation mechanisms and their artificial modification [J]. J Appl Meteorol, 1968, 7(5): 851-859.
[3] CUI X, LI X. Role of surface evaporation in surface rainfall processes [J]. J Geophys Res, 2006, 111, D17112, doi: 10.1029/2005JD006876.
[4] HOUZE R A JR. A climatological study of vertical transports by cumulus-scale convection [J]. J Atmos Sci, 1973, 30(6): 1 112-1 123.
[5] STEINER M, HOUZE R A JR. Three-dimensional validation at TRMM ground truth sites: Some early results from Darwin, Australia[C]// Preprints, 26th Int Conf on Radar Meteorology, Norman, OK, Amer Meteorol Soc, 1993: 417-420.
[6] STEINER M, HOUZE R A JR, YUTER S E. Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data [J]. J Appl Meteorol, 1995, 34(9): 1 978-2 007.
[7] ROSENFELD D, AMITAI E, WOLFF D B. Classification of rain regimes by the three-dimensional properties of reflectivity fields [J]. J Appl Meteorol, 1995, 34(1): 198-211.
[8] TAO W K, SIMPSON J, MCCUMBER M. An ice-water saturation adjustment [J]. Mon Wea Rev, 1989, 117(1): 231-235.
[9] SUI C H, LAU K M, TAO W K, et al. The tropical water and energy cycles in a cumulus ensemble model. Part I: Equilibrium climate [J]. J Atmos Sci, 1994, 51(5): 711-728.
[10] TAO W K, LANG S, SIMPSON J, et al. Vertical profiles of latent heat release and their retrieval for TOGA COARE convective systems using a cloud resolving model, SSM/I, and ship-borne radar data [J]. J Meteorol Soc Japan, 2000, 78(4): 333-355.
[11] SUI C H, TSAY C T, LI X. Convective stratiform rainfall separation by cloud content [J]. J Geophys Res, 2007, 112: D14213, doi: 10.1029/2006JD008082.
[12] SOONG S T, OGURA Y. Response of tradewind cumuli to large-scale processes [J]. J Atmos Sci, 1980, 37(9): 2 035-2 050.
[13] SOONG S T, TAO W K. Response of deep tropical cumulus clouds to Mesoscale processes [J]. J Atmos Sci, 1980, 37(9): 2 016-2 034.
[14] TAO W K, SIMPSON J. The Goddard Cumulus Ensemble model. Part I: Model description [J]. Terr Atmos Oceanic Sci, 1993, 4(1): 35-72.
[15] LI X, SUI C H, LAU K M, et al. Large-scale forcing and cloud-radiation interaction in the tropical deep convective regime [J]. J Atmos Sci, 1999, 56(17): 3 028-3 042.
[16] LIN Y L, FARLEY R D, ORVILLE H D. Bulk parameterization of the snow field in a cloud model [J]. J Climate Appl Meteorol, 1983, 22(6): 1 065-1 092.
[17] RUTLEDGE S A, HOBBS P V. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part VIII: A model for the "seeder-feeder" process in warm-frontal rainbands [J]. J Atmos Sci, 1983, 40(5): 1 185-1 206.
[18] RUTLEDGE S A, HOBBS P V. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands [J]. J Atmos Sci, 1984, 41(20): 2 949-2 972.
[19] TAO W K, SIMPSON J. Modeling study of a tropical squall-type convective line [J]. J Atmos Sci, 1989, 46(2): 177-202.
[20] KRUEGER S K, FU Q, LIOU K N, et al. Improvement of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection [J]. J Appl Meteorol, 1995, 34(1): 281-287.
[21] CHOU M D, SUAREZ M J, HO C H, et al. Parameterizations for cloud overlapping and shortwave single scattering properties for use in general circulation and cloud ensemble models [J]. J Atmos Sci, 1998, 55(2): 201-214.
[22] CHOU M D, KRATZD P, RIDGWAYW. Infrared radiation parameterization in numerical climate models [J]. J Climate, 1991, 4(4): 424-437.
[23] CHOU M D, SUAREZM J. An efficient thermal infrared radiation parameterization for use in general circulation model [Z]. NASA TechMemo, 1994, 104606, 3: 85. [Available from NASA/Goddard Space Flight Center, Code 913, Greenbelt, MD 20771.]
[24] ZHANG M H, LIN J L. Constrained variational analysis of sounding data based on column-integrated budgets of mass, heat, moisture, and momentum: Approach and application to ARM measurements [J]. J Atmos Sci, 1997, 54(7): 1 503-1 524.
[25] WELLER R A, ANDERSON S P. Surface meteorology and air-sea fluxes in the western equatorial Pacific warm pool during TOGA COARE [J]. J Climate, 1996, 9(7): 1 959-1 990.
[26] LI X, SUI C H, LAU K M. Dominant cloud microphysical processes in a tropical oceanic convective system: A 2-D cloud resolving modeling study [J]. Mon Wea Rev, 2002, 130(10): 2 481-2 491.
[27] LI X, SUI C H, LAU K M, et al. Tropical convective responses to microphysical and radiative processes: A sensitivity study with a 2D cloud resolving model [J]. Meteorol Atmos Phys, 2005, 90(3-4): 245-259.
[28] LI X, SUI C H, LAU K M. Interactions between tropical convection and its environment: An energetics analysis of a 2D cloud resolving simulation [J]. J Atmos Sci, 2002, 59(10): 1 712-1 722.
[29] GAO S, CUI X, ZHOU Y, et al. Surface rainfall processes as simulated in a cloud resolving model [J]. J Geophys Res, 2005, 110: D10202, doi: 10.1029/2004JD005467.
[30] GAO S, RAN L, LI X. Impacts of ice microphysics on rainfall and thermodynamic processes in the tropical deep convective regime: A 2D cloud-resolving modeling study [J]. Mon Wea Rev, 2006, 134(10): 3 015-3 024.
[31] GAO S, LI X. Cloud-resolving modeling of convective processes [M]. Springer, Dordrecht, 2008: 0-206.
[32] GAO S, LI X. Effects of time-dependent large-scale forcing, solar zenith angle, and sea surface temperature on time-mean tropical rainfall processes [J]. Meteorol Atmos Phys, 2010, 106(1-2): 95-105.
[33] SHEN X, WANG Y, ZHANG N, et al. Roles of large-scale forcing, thermodynamics, and cloud microphysics in tropical precipitation processes [J]. Atmos Res, 2010, 97(3): 371-384.
[34] SUI C H, LI X, YANG M J. Estimation of oceanic precipitation efficiency in cloud models [J]. J Atmos Sci, 2005, 62(12): 4 358-4 370.
[35] SUI C H, LI X, YANG M J. On the definition of precipitation efficiency [J]. J Atmos Sci, 2007, 64(12): 4 506-4 513.
[36] GAO S, CUI X, LI X. A modeling study of diurnal rainfall variations during the 21-day period of TOGA COARE [J]. Adv Atmos Sci, 2009, 26(5): 895-905.
[37] GAO S, LI X. Precipitation equations and their applications to the analysis of diurnal variation of tropical oceanic rainfall [J]. J Geophys Res, 2010, doi: 10.1029/2009JD012452.
[38] PING F, LUO Z, LI X. Kinematics, Cloud microphysics, and spatial structures of tropical cloud clusters: A two-dimensional cloud-resolving modeling study [J]. Atmos Res, 2008, 88(3-4): 323-336.
[39] GAO S, PING F, LI X, et al. A convective vorticity vector associated with tropical convection: A two-dimensional cloud-resolving modeling study [J]. J Geophys Res, 2004, 109: D14106, doi: 10.1029/2004JD004807.
[40] GAO S, CUI X, ZHOU Y, et al. A modeling study of moist and dynamic vorticity vectors associated with two-dimensional tropical convection [J]. J Geophys Res, 2005, 110: D17104, doi: 10.1029/2004JD005675.
[41] XU Feng-wen, CUI Xiao-peng, XU Xiao-feng, et al. A cloud-resolving modeling study of the surface rainfall processes in the Jiang-Huai valley during July 2007 II: Diagnostic analysis of the simulated surface rainfall processes [J]. J Trop Meteorol, 2011, 27(3): 365-372 (in Chinese).
[42] WENG F, ZHAOL, POEG, et al. AMSU cloud and precipitation algorithms [J]. Radio Sci, 2003, 38: 8068, doi: 10.1029/2002RS002679.
[43] HAN Y, VAN DELST P, LIU Q, et al. JCSDA Community Radiative Transfer Model (CRTM)�CVersion 1[R]. NOAA Technical Report NESDES 122, 2006: 33.
[44] SUI C H, LI X. A tendency of cloud ratio associated with the development of tropical water and ice clouds [J]. Terr Atmos Ocean Sci, 2005, 16(2): 419-434.