[1] GAO S, PING F, LI X, et al. A convective vorticity vector associated with tropical convection: A two dimensional cloud-resolving modeling study [J]. J. Geophys. Res., 2004, 109: D14106, doi: 10.1029/2004JD004807.
[2] GAO S, LI X, TAO W K, et al. Convective and moist vorticity vectors associated with tropical oceanic convection: A three-dimensional cloud-resolving model simulation [J]. J. Geophys. Res., 2007, 112: D01105, doi: 10.1029/2006JD007179.
[3] GAO S, CUI X, ZHOU Y, et al. A modeling study of moist and dynamic vorticity vectors associated with two-dimensional tropical convection [J]. J. Geophys. Res., 2005, 110: D17104, 2005, doi: 10.1029/2004JD005675.
[4] GAO S, CUI X, ZHOU Y, et al, et al. Surface rainfall processes as simulated in a cloud-resolving model [J]. J. Geophys. Res., 2005, 110: D10202, doi: 10.1029/2004JD005467.
[5] GAO S, LI X. Cloud-Resolving Modeling of Convective Processes [M]. Germany: Springer, 2008: 206pp.
[6] ARNOTT J M, EVANS J L, CHIAROMONTE F. Characterization of extratropical transition using cluster analysis [J]. Mon. Wea. Rev., 2004, 132(12): 2916-2937.
[7] JONES S C, HARR P A, ABRAHAM J, et al. The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions [J]. Wea. Forecasting, 2003, 18(6): 1052-1092.
[8] DiMEGO G J, BOSART L F. The transformation of tropical storm agnes into an extratropical cyclone. Part I: The observed fields and vertical motion computations [J]. Mon. Wea. Rev., 1982, 110(5): 385-411.
[9] DiMEGO G J, BOSART L F. The transformation of tropical storm agnes into an extratropical cyclone. Part II: Moisture, vorticity and kinetic energy budgets [J]. Mon. Wea. Rev., 1982, 110(5): 412-433.
[10] LEI Xiao-tu, CHEN Lian-shou. Tropical cyclone landfalling and its interaction with mid-latitude circulation systems [J]. Acta Meteor. Sinica, 2001, 59(5): 602-615.
[11] CHEN Lian-shou, LUO Zhe-xian, LI Ying. Research advances on tropical cyclone landfall process [J]. Acta Meteor. Sinica, 2004, 62(5): 541-549.
[12] PALMéN E. Vertical circulation and release of kinetic energy during the development of hurricane hazel into an extratropical storm [J]. Tellus, 1958, 10(1): 1-23.
[13] HARR P A, ELSBERRY R L, HOGAN T F, et al. Extratropical transition of tropical cyclones over the western North Pacific. Part II: The impact of midlatitude circulation characteristics [J]. Mon. Wea. Rev., 2000, 128(8): 2634-2653.
[14] KLEIN P M, HARR P A, ELSBERRY R L. Extratropical transition of western North Pacific tropical cyclones: An overview and conceptual model of the transformation stage [J]. Wea. Forecasting, 2000, 15(4): 373-395.
[15] HANLEY D, MOLINARI J, KEYSER D, et al. A composite study of the interactions between tropical cyclones and upper-tropospheric troughs [J]. Mon. Wea. Rev., 2001, 129(10): 2570-2584.
[16] XU Xiang-de, CHEN Lian-shou, XIE Yi-yang, et al. Typhoon transition and its impact on heavy rain [J]. Sci. Atmos. Sinica, 1998, 22(5): 744-752.
[17] MATANO H, SEKIOKA M. On the synoptic structure of Typhoon Cora, 1969, as the compound system of tropical and extratropical cyclones [J]. J. Meteor. Soc. Japan, 1971, 49: 282-295.
[18] MATANO H, SEKIOKA M. Some aspects of extratropical transformation of a tropical cyclone [J]. J. Meteor. Soc. Japan, 1971, 49: 736-743.
[19] EVANS J L, HART R E. Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones [J]. Mon. Wea. Rev., 2003, 131(5): 909-925.
[20] HART R E, EVANS J L, EVANS C. Synoptic composites of the extratropical transition life cycle of north Atlantic tropical cyclones: Factors determining posttransition evolution[J]. Mon. Wea. Rev., 2006, 134(2): 553-578.
[21] SINCLAIR M R. Extratropical transition of southwest Pacific tropical cyclones. Part I: Climatology and mean structure changes [J]. Mon. Wea. Rev., 2002, 130(3): 590-609.
[22] HARR P A, ELSBERRY R L. Extratropical transition of tropical cyclones over the western North Pacific. Part I: Evolution of structural characteristics during the transition process [J]. Mon. Wea. Rev., 2000, 128(8): 2613-2633.
[23] KLEIN P M, HARR P A, ELSBERRY R L. Extratropical transition of western North Pacific tropical cyclones: Midlatitude and tropical cyclone contributions to reintensification [J]. Mon. Wea. Rev., 2002, 130(9): 2240-2259.
[24] KITABATAKE N. Extratropical transition of tropical cyclones in the western North Pacific: Their frontal evolution[J]. Mon. Wea. Rev., 2008, 136(6): 2066-2090.
[25] ZHONG Lin-hao, HUA Li-juan, FENG Shi-de. A climatology of extratropical transition of tropical cyclones in the western North Pacific [J]. J. Trop. Meteor., 2009, 15(2): 130-147.
[26] ONOGI K, TSUTSUI J, et al. The JRA-25 reanalysis [J]. J. Meteor. Soc. Japan, 2007, 85(3): 396-432.
[27] HART R E. A cyclone phase space derived from thermal wind and thermal asymmetry [J]. Mon. Wea. Rev., 2003, 131(4): 585-616.
[28] SINCLAIR M R. Extratropical transition of southwest pacific tropical cyclones. Part II: Midlatitude circulation characteristics [J]. Mon. Wea. Rev., 2004, 132(9): 2145-2168.
[29] HART R E, EVANS J L. A climatology of the extratropical transition of Atlantic tropical cyclones [J]. J. Climate, 2001, 14(4): 546-564.
[30] HOLLAND G J, MERRILL R T. On the dynamics of tropical cyclone structural changes [J]. Quart. J. Roy. Meteor. Soc., 1984, 110: 723-745.