[1] RINEHART R E, GARVEY E T. Three-dimensional stormmotion detection by conventional weather radar [J]. Nature,1978, 273: 287-289.
[2] LI L, SCHMID W, JOSS J. Nowcasting of motion andgrowth of precipitation with radar over a complex orography[J]. J. Appl. Meteor., 1995, 34(6): 1 286-1 300.
[3] CRANE R K. Automatic cell detection and tracking. [J].IEEE Transact. on Geosci. Electron., 1979, 17(4): 250-262.
[4] ROSENFELD D. Objective method for analysis andtracking of convective cells as seen by radar [J]. J. Atmos.Ocean. Technol., 1987, 4(3): 422-434.
[5] HANDWERKER J. Cell tracking with TRACE3D―A newalgorithm [J]. Atmos. Res., 2002, 61(1): 15-34.
[6] DIXON M J, WIENER G. TITAN: Thunderstormidentification, tracking, analysis and nowcasting-a radar basedmethodology [J]. J. Atmos. Ocean. Technol., 1993, 10(6):785-797.
[7] JOHNSON J T, MACKEEN P L, WITT A, et al. The Stormcell identification and tracking algorithm: An enhancedWSR-88D algorithm [J]. Weather and Forecasting, 1998, 13(2):263-276.
[8] XIAO Yan-jiao, TANG Da-zhang, LI Zhong-hua, et al.Storm automatic identification, tracking and forcasting [J]. J.Nanjing Inst. Meteor., 1998, 21(2): 223-229.
[9] LI Wen-hui. Application of Hungary algorithm inassignment problem of train crew [J]. J. Lanzhou Commun.Univ. (Nat. Sci.), 2007, 26(3): 55-57.
[10] LAWLER E L. Combinatorial Optimization: Networksand Matroids [M]. Oxford: Oxford University Press, 1995:384.
[11] ROBERTS F S. Applied Combinatorics [M]. PrenticeHall, 1984: 565-568.
[12] CHU Yan-zheng. Improvement of Hungarian method insolving designation problems [J]. J. Chongqing Inst. Technol.Manage., 1998, 12(4): 76-77.
[13] GU Da-quan, ZUO Li, HOU Tai-ping, et al. Existing problem and improvement of “Hungary Arithmetic” [J].Microcom. Develop., 2003, 13(4): 76-78.
[14] XING Wen-xun, XIE Jin-xing. Modern OptimizationAlgorithms [M], Beijing: Tsinghua University Press, 2005:247.
[15] DUAN Cha-li, CHEN Bo. Simulated annealing algorithmto solve assignment problem under VB [J]. Comput. Knowl.Technol., 2008, 4(8): 2 153-2 155.
[16] WU Yan-qun, DONG Peng. A general simulatedannealing algorithm for solving large scale asymmetricalassignment problem [J]. J. Lanzhou Commun. Univ., 2008,27(4): 149-155.
[17] LI Yan, CHEN Zu-an, XU Yue-fei, et al. Research ongenetic algorithm for assignment problem and its realization[J]. J. Xi’an Univ. Technol., 1996, 12(4): 271-276.
[18] ZHANG Quan, XIU Hong-wei. Application of the geneticalgorithm in the assignment problem [J]. J. Shenyang Architect.Civil Eng. Inst., 1997, 13(1): 25-28.
[19] WU Hai-jun. Solving assignment problem based ongenetic algorithm [J]. Comput. Study, 2005, 6: 23-24.
[20] RUDOLPH G. Convergence Properties of CanonicalGenetic Algorithms [J]. IEEE Trans. on Neural Network, 1994,5(1): 96-101.
[21] DE JONG K A. An Analysis of the Behavior of a Class ofGenetic Adaptive Systems [D]. Theses for Doctoral Degree,Ann Arbor: University of Michigan, 1975: 1-266.
[22] EIBEN A E, AARTS E H, VAN HEE K M. Globalconvergence of genetic algorithms: A Markov chain analysis[C]//Parallel Problem Solving from Nature. Berlin: Springer,1991: 3-12.
[23] WANG Lei, SHEN Ting-zhi, ZHAO Yang. An improvedadaptive genetic algorithm [J]. Syst. Eng. Electron., 24(5):75-78.
[24] YIN Ren-kun, WU Yang, ZHANG Jing-wei. Research andapplication of the ant colony algorithm in the assignmentproblem [J]. Comput. Eng. Sci., 2008, 30(4): 43-112.
[25] HAN Jian-feng, LI Min-qiang, KOU Ji-song. Encodingschemes of array problem in genetic algorithms [J]. Comput.Eng. Sci., 2002, 12: 29-32.