[1] ARAKAWA A, SCHUBERT W H. Interaction of acumulus cloud ensemble with the large-scale environment.Part I [J]. J. Atmos. Sci., 1974, 31: 674-701.
[2] BETTS A K, MILLER M J. A new convective adjustmentscheme. Part II: Single column tests using GATE wave,BOMEX, ATEX and Artic airmass data set [J]. Quart. J. Roy.Meteor. Soc., 1986, 112: 692-709.
[3] RANDALL D A, PAN D M. Implementation of theArakawa-Schubert cumulus parameterization with a prognosticclosure. [J]. Meteor. Monogr., Amer. Meteor. Soc., 1993, 46:137-144.
[4] XU K M, RANDALL D A. Explicit simulation of cumulusensembles with the GATE Phase III data: Comparison withobservations [J]. J. Atmos. Sci., 1996, 53: 3710-3736.
[5] LI X, SUI C H, LAU K M. Interactions between tropicalconvection and its embedding environment: An energeticsanalysis of a 2-D cloud resolving simulation [J]. J. Atmos. Sci.,2002, 59: 1712-1722.
[6] GAO S, CUI X, ZHOU Y, et al. Surface rainfall processesas simulated in a cloud resolving model [J]. J. Geophys. Res.,2005, 110, D10202, doi: 10.1029/2004JD005467.
[7] GAO S, LI X. Precipitation equations and theirapplications to the analysis of diurnal variation of tropicaloceanic rainfall [J]. J. Geophys. Res., 2009, revised.
[8] LI X, SUI C H, LAU K M. Precipitation efficiency in thetropical deep convective regime: A 2-D cloud resolvingmodeling study [J]. J. Meteor. Soc. Japan, 2002, 80: 205-212.
[9] WELLER R A, ANDERSON S P. Surface meteorology andair-sea fluxes in the western equatorial Pacific warm poolduring TOGA COARE [J]. J. Climate, 1996, 9: 1959-1990.
[10] LI X, SUI C H, LAU K M. Dominant cloud microphysicalprocesses in a tropical oceanic convective system: A 2-D cloudresolving modeling study [J]. Mon. Wea. Rev. 2002, 130:2481-2491.
[11] ZHOU Y, CUI X, LI X. Contribution of cloud condensateto Surface rain rate [J]. Prog. Nat. Sci., 2006, 16: 967-973.
[12] CUI X, LI X. Role of surface evaporation in surfacerainfall processes [J]. J. Geophys. Res. 2006, 111, D17112,doi: 10.1029/2005JD006876.
[13] SUI C H, Li X, YANG M J, et al. Estimation of oceanicprecipitation efficiency in cloud models [J]. J. Atmos. Sci.,2005, 62: 4358-4370.
[14] SUI C H, LI X, YANG M J. On the definition ofprecipitation efficiency [J]. J. Atmos. Sci., 2007, 64:4506-4513.
[15] GAO S, PING F, LI X, et al. A convective vorticity vectorassociated with tropical convection: A 2D cloud-resolvingmodeling study [J]. J. Geophys. Res., 2004, 109, D14106, doi: 10.1029/2004JD004807.
[16] GAO S, CUI X, ZHOU Y, et al. A modeling study ofmoist and dynamic vorticity vectors associated with 2Dtropical convection [J]. J. Geophys. Res., 2005, 110, D17104,doi: 10.1029/2004JD005675.
[17] GAO S, RAN L, LI X. Impacts of ice microphysics onrainfall and thermodynamic processes in the tropical deepconvective regime: A 2D cloud-resolving modeling study [J].Mon. Wea. Rev., 2006, 134: 3015-3024.
[18] GAO S, Ping F, Li X. Tropical heat/waterquasi-equilibrium and cycle as simulated in a 2D cloudresolving model [J]. Atmos. Res., 2006, 79:15-29.
[19] GAO S, LI X. Responses of tropical deep convectiveprecipitation systems and their associated convective andstratiform regions to the large-scale forcing [J]. Quart. J. Roy.Meteor. Soc, 2008, 134: 2127-2141.
[20] PING F, LUO Z, LI X. Kinematics, Cloud microphysics,and spatial structures of tropical cloud clusters: Atwo-dimensional cloud-resolving modeling study [J]. Atmos.Res., 2008, 88: 323-336.
[21] GAO S, CUI X, LI X. A modeling study of diurnalrainfall variations during the 21-day period of TOGA COARE[J]. Adv. Atmos. Sci., 2009, 26: 895-905.
[22] SUI C H, LI X. A tendency of cloud ratio associated withthe development of tropical water and ice clouds [J]. Terr.Atmos. Oceanic Sci., 2005, 16: 419-434.
[23] CUI X, ZHOU Y, LI X. Cloud microphysical properties intropical convective and stratiform regions [J]. Meteor. Atmos.Phys., 2007, 98: 1-11.
[24] SUI C H, TSAY C T, LI X. Convective stratiform rainfallseparation by cloud content [J]. J. Geophys. Res., 2007, 112,D14213, doi: 10.1029/2006JD008082.
[25] GAO S, LI X. Cloud-resolving modeling of convectiveprocesses [M]. Dordrecht: Springer Press, 2008, 206 pp.
[26] WANG D, LI X, TAO W K, et al. Effects of vertical windshear on convective development during a landfall of severetropical storm Bilis (2006) [J]. Atmos. Res., 2009, 94:270-275.
[27] WANG D, LI X, TAO W K. Cloud radiative effects onresponses of convective and stratiform rainfall to large-scaleforcing [J]. Atmos. Res., 2009, submitted.
[28] LI X, ZHANG S, ZHANG D L. Thermodynamic, cloudmicrophysics and rainfall responses to initial moistureperturbations in the tropical deep convective regime [J]. J.Geophys. Res., 2006, 111, D14207,doi: 10.1029/2005JD006968.
[29] GAO S, LI X. Impacts of initial conditions oncloud-resolving simulations [J]. Adv. Atmos. Sci., 2008, 25:737-747.
[30] GAO S, LI X. Dependence of the accuracy ofprecipitation and cloud simulation on time and spatial scales[J]. Adv. Atmos. Sci., 2009, in press.
[31] LI X, SHEN X. Sensitivity of cloud-resolvingprecipitation simulations to uncertainty of vertical structuresof initial conditions [J]. Quart. J. Roy. Meteor. Soc., 2009,Revised.
[32] GAO S, ZHOU Y, LI X. Effects of diurnal variations ontropical equilibrium states: A two-dimensional cloud-resolvingmodeling study [J]. J. Atmos. Sci., 2007, 64: 656-664.
[33] GAO S. A cloud-resolving modeling study of cloudradiative effects on tropical equilibrium states [J]. J. Geophys.Res., 2008, 113, D03108, doi: 10.1029/2007JD009177.
[34] PING F, LUO Z, LI X. Microphysical and radiativeeffects of ice microphysics on tropical equilibrium states: Atwo-dimensional cloud-resolving modeling study [J]. Mon.Wea. Rev., 2007, 135: 2794-2802.
[35] ZHOU Y, Li X. Sensitivity of convective and stratiformrainfall to sea surface temperature [J]. Atmos. Res., 2009, 92:212-219.
[36] CUI X. A cloud-resolving modeling study of diurnalvariations of tropical convective and stratiform rainfall [J]. J.Geophys. Res., 2008, 113, D02113, doi: 10.1029/2007JD008990.
[37] CUI X, LI X. Diurnal responses of tropical convective andstratiform rainfall to diurnally varying sea surface temperature[J]. Meteor. Atmos. Phys., 2009, 104: 53-61.
[38] TAO W K, SIMPSON J, SUI C H, et al. Heating,moisture and water budgets of tropical and midlatitude squalllines: Comparisons and sensitivity to longwave radiation [J]. J.Atmos. Sci., 1993, 50: 673-690.
[39] SUI C H, LAU K M, TAO W K, et al. The tropical waterand energy cycles in a cumulus ensemble model. Part I:Equilibrium climate [J]. J. Atmos. Sci., 1994, 51: 711-728.
[40] CHONG M, HAUSER D. A tropical squall line observedduring the CORT 81 experiment in West Africa. Part II: Waterbudget [J]. Mon. Wea. Rev., 1989, 117: 728-744.
[41] GALLUS W A Jr., JOHNSON R H. Heat and moisturebudgets of an intense midlatitude squall line [J]. J. Atmos. Sci.,1991, 48: 122-146.
[42] RUTLEDGE S A, Hobbs P V. The mesoscale andmicroscale structure and organization of clouds andprecipitation in midlatitude cyclones. Part VIII: A model forthe "seeder-feeder" process in warm-frontal rainbands [J]. J.Atmos. Sci., 1983, 40: 1185-1206.
[43] RUTLEDGE S A, HOBBS P V. The mesoscale andmicroscale structure and organization of clouds andprecipitation in midlatitude cyclones. Part XII: A diagnosticmodeling study of precipitation development in narrowcold-frontal rainbands [J]. J. Atmos. Sci., 1984, 41:2949-2972.
[44] LIN Y L, FARLEY R D, ORVILLE H D. Bulkparameterization of the snow field in a cloud model [J]. J.Climate Appl. Meteor., 1983, 22: 1065-1092.
[45] TAO W K, SIMPSON J, McCUMBER M. An ice-watersaturation adjustment [J]. Mon. Wea. Rev., 1989, 117:231-235.
[46] KRUEGER S K, FU Q, LIOU K N, et al. Improvement ofan ice-phase microphysics parameterization for use innumerical simulations of tropical convection [J]. J. Appl.Meteor., 1995, 34: 281-287.