[1] LINDZEN R. S., HOLTON J. R. A theory of thequasi-biennial oscillatinn [J]. J. Atmos.Sci., 1968, 25:1095-1107.
[2] MATSUNO T. Vertical propagation of stationary planetarywaves in the winter northern hemisphere [J]. J. Atmos. Sci.1970, 27: 871-883.
[3] GAO Shou-ting, TAO Shi-yan, DING Yi-hui. Thegeneraised E-P flux wave-meamow interactions [J]. Sci. inChina (Ser. B). 1990, 33: 704-715.
[4] PFEFFER R L. A study of eddy-induced fluctuations of thezonal-mean wind using conventional and transformed Euleriandiagnostics. [J] J. Atmos. Sci. 1992, 49: 1036-1050.
[5] ANDREWS D G. Finite-amplitude Eliassen-Palm theoremin isentropic coordinates [J]. J. Atmos. Sci. 1983, 40:1877-1883.
[6] BRUNET G., HAYNES P H. Low-latitude reflection ofRossby wave trains [J]. J. Atmos. Sci. 1996, 53: 482-496.
[7] DURRAN D R. Pseudomomentum diagnostics fortwo-dimensional stratified compressible flow [J]. J. Atmos. Sci.1995, 52: 3997-4008.
[8] MAGNUSDOTTIR G, HAYNES P H. Application ofwave-activity diagnostics to baroclinic-wave life cycles [J]. J.Atmos. Sci. 1996, 53: 2317-2353.
[9] MU M. Energy casimir method in the study of nonlinearstability of the atmospheric motions [J]. Adv. in Mechan.,1998, 28: 235-249.
[10] MU M, VLADIMIROV V, WU Yong-hui.Energy�Ccasimir and energy�Clagrange methods in the study ofnonlinear symmetric stability problems [J]. J. Atmos. Sci.,1999, 56: 400-411.
[11] MURRAY D M. A pseudoenergy conservation law for thetwo-dimensional primitive equations [J]. J. Atmos. Sci. 1998,55: 2261-2269.
[12] ELIASSEN A, PALM E. On the transfer of energy instationary mountain waves [J]. Geofys. Publ., 1961,22(3):1-23.
[13] ANDREWS D G, MCINTYRE M E. Planetary waves inhorizontal and vertical shear: The generalized Eliassen-Palmrelation and the mean zonal acceleration [J]. J. Atmos. Sci.,1976, 33: 2031-2048.
[14] GAO Shou-ting, ZHANG Heng-de, LU Wei-song.Ageostrophic Generalized E-P flux in Baroclinic Atmosphere[J]. Chin. Phys. Lett., 2004, 21: 576-579.
[15] SCINOCCA J F, SHEPHERD T G. Nonlinearwave-activity conservation laws and Hamiltonian structure forthe two-dimensional anelastic equations [J]. J. Atmos. Sci.1992, 49: 5-27.
[16] HAYNES P H. Forced, dissipative generalizations offinite-amplitude wave activity conservation relations for zonaland nonzonal basic flows [J]. J. Atmos. Sci., 1988, 45:2352-2362.
[17] ZENG Qing-cun. Evolution of large-scale disturbancesand their interaction with mean flow in a rotating barotropicatmosphere [J]. Adv. Atmos. Sci., 1986, 3: 172-188.
[18] ZENG Qing-cun, ZHANG Min. Wave-mean flowinteraction: the role of continuous-spectrum disturbances [J].Adv. Atmos. Sci., 2000, 17: 1-17.
[19] HUANG Rong-hui. The role of greenland plateau in theformation of the northern hemispheric stationary planetarywaves in winter [J]. Chin. J. Atmos. Sci., 1983, 7: 393-402.
[20] HUANG Rong-hui, GAMBO K. On other wave guide instationary planetary wave propagations in the winter NorthernHemisphere [J]. Sci. in China (Ser. B), 1983, 10: 940-950.
[21] WU Guo-xiong, CHEN B. Non-acceleration theorem in aprimitive equation system. I: Acceleration of zonal meanflow[J]. Adv. Atmos. Sci., 1989, 6: 1-20.
[22] LIU Shi-kuo, LIU Shi-da. Atmospheric Dynamics [M].Beijing: Peking University Press, 1999. 292-310.
[23] LU Ke-li. Conservation conditions of potential vorticityand wave energy,action and enstrophy for Rossby waves.[J]. J.Trop. Meteor., 1995, 11: 258-268.
[24] DING Yi-hui, SHEN Xin-yong. The Interactions betweenSymmetric Disturbance and Zonally Basic Flow. Part I: SlantE-P Flux Theory [J]. Chin. J. Atmos. Sci., 1998, 22: 735-743.
[25] MCINTYRE M E, SHEPHERD T G. An exact localconservation theorem for finite amplitude disturbances tonon-parallel shear flows, with remarks on Hamiltonianstructure and on Arnold’s stability theorems [J]. J. Fluid.Mech., 1987, 181: 527-565.
[26] RAN L, GAO S. A three-dimensional wave-activityrelation for pseudomomentum [J]. J. Atmos. Sci., 2007, 64:2126-2134.
[27] RAN Ling-kun, BOYD J P. The theory of interactionbetween wave and basic flow. [J]. Chin. Phys., 2008, 17:1138-1146.
[28] GAO S, RAN L. Diagnosis of wave activity in aheavy-rainfall event [J]. J. Geophys. Res., 2009, 114:D08119, doi: 10.1029/2008JD010172.
[29] GAO S, WANG X, ZHOU Y. Generation of generalizedmoist potential vorticity in a frictionless and moist adiabaticflow [J]. Geophys. Res. Lett., 2004, 31: L12113,doi: 10.1029/2003GL019152.