[1] CHA D H, LEE D K, HONG S Y.Impact of boundary layer processes on seasonal simulation of the East Asian summer monsoon using a regional climate model [J].Meteor Atmos Phys, 2008, 100(1): 53-72, https://doi.org/10.1007/s00703-008-0295-6.
[2] SHIN H H, HONG S Y.Intercomparison of planetary boundary-layer parametrizations in the WRF Model for a single day from CASES-99 [J].Bound-Layer Meteor, 2011, 139(2): 261-281, https://doi.org/10.1007/s10546-010-9583-z.
[3] HU X M, NIELSEN-GAMMON J W, ZHANG F.Evaluation of three planetary boundary layer schemes in the WRF Model [J].J Appl Meteor Climatol, 2010, 49(9): 1831-1844, https://doi.org/10.1175/2010JAMC2432.1.
[4] HU X M, DOUGHTY D C, SANCHEZ K J, et al.Ozone variability in the atmospheric boundary layer in Maryland and its implications for vertical transport model [J].Atmos Environ, 2012, 46: 354-364, https://doi.org/10.1016/j.atmosenv.2011.09.054.
[5] XIE B, FUN, J C H, CHAN A, et al.Evaluation of nonlocal and local planetary boundary layer schemes in the WRF Model [J].J Geophys Res, 2012, 117: D12103, https://doi.org/10.1029/2011JD017080.
[6] QIAN Y, HUANG M, YANG B, et al.A modeling study of irrigation effects on surface fluxes and land-air-cloud interactions in the Southern Great Plains [J].J Hydrometeor, 2013, 14(3): 700-721, https://doi.org/10.1175/JHM-D-12-0134.1.
[7] YANG Q, BERG L K, PEKOUR M J, et al.Evaluation of WRF-predicted near-hub-height winds and ramp events over a Pacific Northwest site with complex terrain [J].J Appl Meteor Climatol, 2013, 52(8): 1753-1763, https://doi.org/10.1175/JAMC-D-12-0267.1.
[8] COHEN A E, CAVALLO S M, CONIGLIO M C, et al.A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S.cold season severe weather environments [J].Wea Forecasting, 2015, 30(3): 591-612, https://doi.org/10.1175/WAF-D-14-00105.1.
[9] WU M W, LUO Y L.Mesoscale observational analysis of lifting mechanism of a warm-sector convective system producing the maximal daily precipitation in China mainland during pre-summer rainy season of 2015 [J].J Meteor Res, 2016, 30(5): 719-736, https://doi.org/10.1007/s13351-016-6089-8.
[10] JANKOV I, GALLUS W A, SEGAL M, et al.The impact of different WRF Model physical parameterizations and their interactions on warm season MCS rainfall [J].Wea Forecasting, 2005, 20(6): 1048-1060, https://doi.org/10.1175/WAF888.1.
[11] STENSRUD D J.Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models [M].Cambridge University Press, 2007: 459.
[12] HACKER J P.Spatial and temporal scales of boundary layer wind predictability in response to small-amplitude land surface uncertainty [J].J Atmos Sci, 2010, 67(1): 217-233, https://doi.org/10.1175/2009JAS3162.1.
[13] NIELSEN-GAMMON J W, HU X M, ZHANG F Q, et al.Evaluation of planetary boundary layer scheme sensitivities for the purpose of parameter estimation [J].Mon Wea Rev, 2010, 138(9): 3400-3417, https://doi.org/10.1175/2010MWR3292.1.
[14] BRAUN S A, TAO W K.Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations [J].Mon Wea Rev, 2000, 128(12): 3941-3961, https://doi.org/10.1175/1520-0493(2000)129 < 3941:SOHRSO > 2.0.CO; 2. doi: 10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2
[15] LI X L, PU Z X.Sensitivity of numerical simulation of early rapid intensification of Hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations [J].Mon Wea Rev, 2008, 136: 4819-4838, https://doi.org/10.1175/2008MWR2366.1.
[16] HONG S Y, PAN H L.Nonlocal boundary layer vertical diffusion in a medium-range forecast model [J].Mon Wea Rev, 1996, 124(12): 2322-2339, https://doi.org/10.1175/1520-0493(1996)124 < 2322:NBLVDI > 2.0.CO; 2. doi: 10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO; 2
[17] STULL R B.Transilient turbulence theory, Part I: The concept of eddy-mixing across finite distances [J].J Atmos Sci, 1984, 41(23): 3351-3367, https://doi.org/10.1175/1520-0469(1984)041 < 3351:TTTPIT > 2.0.CO; 2. doi: 10.1175/1520-0469(1984)041<3351:TTTPIT>2.0.CO;2
[18] WYNGAARD J C, BROST R A.Top-down and bottom-up diffusion of a scalar in the convective boundary layer[J].J Atmos Sci, 1984, 41(1): 102-112, https://doi.org/10.1175/1520-0469(1984)041 < 0102:TDABUD > 2.0.CO; 2. doi: 10.1175/1520-0469(1984)041<0102:TDABUD>2.0.CO;2
[19] TROEN I, MAHRT L.A simple model of the atmospheric boundary layer sensitivity to surface evaporation [J].Bound-Layer Meteor, 1986, 37(1-2): 129-148, https://doi.org/10.1007/BF00122760.
[20] JANJIC´ Z I.The step-mountain coordinate: Physical package [J].Mon Wea Rev, 1990, 118(7): 1429-1443, https://doi.org/10.1175/1520-0493(1990)118 < 1429:TSMCPP > 2.0.CO; 2. doi: 10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2
[21] PLEIM J E, CHANG J S.A non-local closure model for vertical mixing in the convective boundary layer [J].Atmos Environ, 1992, 26(6): 965-981, https://doi.org/10.1016/0960-1686(92)90028-J.
[22] SHAFRAN P C, SEAMAN N L, GAYNO G A.Evaluation of numerical predictions of boundary layer structure during the Lake Michigan Ozone Study [J].J Appl Meteor, 2000, 39(3): 412-426, https://doi.org/10.1175/1520-0450(2000)039 < 0412:EONPOB > 2.0.CO; 2. doi: 10.1175/1520-0450(2000)039<0412:EONPOB>2.0.CO;2
[23] SKAMAROCK W, KLEMP J B, DUDHIA J, et al.A Description of the Advanced Research WRF Version 3[R]. NCAR Tech Note TN-4751STR, 2008, 113 pp, https://doi.org/10.13140/RG.2.1.2310.6645. 10.13140/RG.2.1.2310.6645
[24] HONG S, NOH Y, DUDHIA J.A new vertical diffusion package with an explicit treatment of entrainment processes [J].Mon Wea Rev, 2006, 134(9): 2318-2341, https://doi.org./10.1175/MWR3199.1.
[25] JANJIĆ Z I.The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes [J].Mon Wea Rev, 1994, 122(5): 927-945, https://doi.org/10.1175/1520-0493(1994)122 < 0927:TSMECM > 2.0.CO; 2. doi: 10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
[26] SUKORIANSKY S, GALPERIN B, PEROV V.Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice[J]. Bound-Layer Meteor, 2005, 117(2): 231-257, https://doi.org/10.1007/s10546-004-6848-4.
[27] NAKANISHI M, NIINO H.An improved Mellor-Yamada Level 3 Model: its numerical stability and application to a regional prediction of advection fog [J].Bound-Layer Meteor, 2006, 119(2): 397-407, https://doi.org/10.1007/s10546-005-9030-8.
[28] PLEIM J E.A combined local and nonlocal closure model for the atmospheric boundary layer, Part I: model description and testing [J].J Appl Meteor Climatol, 2007, 46(9): 1383-1395, https://doi.org/10.1175/JAM2539.1.
[29] BOUGEAULT P, LACARRERE P.Parameterization of orography-induced turbulence in a mesobeta-scale model[J]. Mon Wea Rev, 1989, 117(8): 1872-1890, https://doi.org/10.1175/1520-0493(1989)117 < 1872:POOITI > 2.0.CO; 2. doi: 10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2
[30] ANGEVINE W M, JIANG H, MAURITSEN T.Performance of an eddy diffusivity-mass flux scheme for shallow cumulus boundary layers [J].Mon Wea Rev, 2010, 138(7): 2895-2912, https://doi.org/10.1175/2010MWR3142.1.
[31] SHIN H H, HONG S.Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions [J].Mon Wea Rev, 2015, 143(1): 250-271, https://doi.org/10.1175/MWR-D-14-00116.1.
[32] GRENIER H, BRETHERTON C S.A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers [J].Mon Wea Rev, 2001, 129(3): 357-377, https://doi.org/10.1175/1520-0493(2001)129 < 0357:AMPPFL > 2.0.CO; 2. doi: 10.1175/1520-0493(2001)129<0357:AMPPFL>2.0.CO;2
[33] GUO J P, MIAO Y C, ZHANG Y, et al.The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data [J].Atmos Chem Phys, 2016, 16(20): 13309-13319, https://doi.org/10.5194/acp-16-13309-2016.
[34] TRIER S B, CHEN F, MANNING K W, et al.Sensitivity of the PBL and precipitation in 12-day simulations of warm -season convection using different land surface models and soil wetness conditions [J].Mon Wea Rev, 2008, 136(7): 2321-2343, https://doi.org/10.1175/2007MWR2289.1.
[35] QIAN Y, YAN H P, BERG L K, et al.Assessing impacts of PBL and surface layer schemes in simulating the surface-atmosphere interactions and precipitation over the tropical ocean using observations from AMIE/DYNAMO [J].J Climate, 2016, 29(22): 8191-8210, https://doi.org/10.1175/JCLI-D-16-0040.1.
[36] WANG Y B, MEI N, FAM L, et al.Comparative experiments of WRF simulation on a fog event of January 2013 in North China [J].Meteor Mon, 2014, 40: 1522-1529 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx201412011
[37] CHENG L S, GUO Y H.Mesoscale numerical simulation of the influence of PBL parameterization and moist process on development of a shear-line vortex [J].Scientia Atmospherica Sinica, 1992, 16: 136-145 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXK199202001.htm
[38] XU H Y, ZHU Y, LIU R, et al.Simulation experiments with different planetary boundary layer schemes in the lower reaches of the Yangtze River [J] Chin J Atmos Sci, 2013, 37: 149-159 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=daqikx201301014
[39] LUO Y.Advances in understanding the early-summer heavy rainfall over South China//[M] The Global Monsoon System (3rd ed), CHANG C P, et al., 2017: 215-226, https://doi.org/10.1142/9789813200913_0017.
[40] HUANG L, LUO Y L.Evaluation of quantitative precipitation forecasts by TIGGE ensembles for south China during the presummer rainy season[J].J Geophys Res Atmos, 2017, 122(16): 8494-8516, https://doi.org/10.1002/2017JD026512.
[41] HONG S, DUDHIA J, CHEN S.A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation [J].Mon Wea Rev, 2004, 132(1): 103-120, https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2. doi: 10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
[42] MLAWER E J, TAUBMAN S J, BROWN P D, et al.Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave[J]. J Geophys Res, 1997, 102(D14): 16663-16682, https://doi.org/10.1029/97JD00237.
[43] GRELL G, DEVENYI D.A generalized approach to parameterizing convection combining ensemble and data assimilation techniques [J].Geophys Res Lett, 2002, 29 (14): 381-384, https://doi.org/10.1029/2002GL015311.
[44] CRESSMAN G P.An operational objective analysis system [J].Mon Wea Rev, 1959, 87: 367-374, https://doi.org/10.1175/1520-0493(1959)087 < 0367:AOOAS > 2.0.CO; 2. doi: 10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2
[45] WU M, LUO Y L, CHEN F, et al.Observed link of extreme hourly precipitation changes to urbanization over coastal south China [J].J Appl Meteor: Clima, 2019, 58(8): 1799-1819, https://doi.org/10.1175/JAMC-D-18-0284.1.
[46] JIMÉNEZ P A, DUDHIA J, GONZÁLEZ-ROUCO J F, et al.A revised scheme for the WRF surface layer formulation [J].Mon Wea Rev, 2012, 140(3): 898-918, https://doi.org/10.1175/MWR-D-11-00056.1.
[47] ANGEVINE W M.An integrated turbulence scheme for boundary layers with shallow cumulus applied to pollutant transport [J].J Appl Meteor, 2005, 44(9): 1436-1452, https://doi.org/10.1175/JAM2284.1.
[48] SIEBESMA A P, SOARES P, TEIXEIRA J.A combined eddy -diffusivity mass-flux approach for the convective boundary layer [J].J Atmos Sci, 2007, 64(4): 1230-1248, https://doi.org/10.1175/JAS3888.1.
[49] CAPLAN P, DERBER J, GEMMILL W, et al.Changes to the 1995 NCEP operational medium-range forecast model analysis-forecast system [J].Wea Forecasting, 1997, 12(3): 581-594, https://doi.org/10.1175/1520-0434(1997)012 < 0581:CTTNOM > 2.0.CO; 2. doi: 10.1175/1520-0434(1997)012<0581:CTTNOM>2.0.CO;2